Combined Science - Chemistry - Key Stage 4
Quantitative Chemistry

Review Lesson

Higher

Mrs Begum

Periodic Table of Elements

$\underset{\substack{\text { mposom }}}{\text { H }}$																	
$\underset{\text { untim }}{\substack{\text { unim }}}$	$\dot{\mathrm{Be}}$												$\underbrace{\text { cid }}_{\text {coico }}$	$\stackrel{14}{\substack{\text { nivean }}}$	${ }_{\substack{\text { copem } \\ \text { arem }}}^{16}$		
	$\underset{\text { momg }}{\mathbf{m}_{12}^{24}}$												${ }_{\substack{\text { Sition }}}^{28}$		$\underset{\substack{\text { cisum }}}{\substack{\text { 32 }}}$		
	$\underbrace{40}_{\substack{\text { cotaim } \\ \text { coio }}}$	${ }_{\substack{\text { cenctim } \\ \text { cent }}}^{45}$	$\underset{\substack{\text { mamimim } \\ \text { mid }}}{48}$				$\begin{aligned} & 56 \\ & \text { Fen } \end{aligned}$				$\underbrace{\substack{\text { c }}}_{\substack{\text { zn } \\ \text { and } \\ \text { 30 }}}$						
$\underset{\substack{\text { Rbb } \\ \text { nism }}}{\text { dit }}$													$\mathbf{S n}_{\mathrm{n}}^{1 \mathrm{~m}}$				
													$\underset{\substack { \text { per } \\ \begin{subarray}{c}{207 \\ 82{ \text { per } \\ \begin{subarray} { c } { 2 0 7 \\ 8 2 } } \\ {\hline 6}\end{subarray}}{ }$				(122]
(int																	

* The lanthanides (atomic numbers 58-71) and the Actinides (atomic numbers 90-103) have been omitted.

Relative atomic masses for $\mathbf{C u}$ and $\mathbf{C l}$ have not been rounded to the nearest whole number.

Independent practice 1

Calculate the M_{r} of the following:

1. Ethanoic acid $-\mathrm{CH}_{3} \mathrm{COOH}$
2. Ethane $-\mathrm{C}_{2} \mathrm{H}_{6}$
3. Magnesium Nitrate - $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
4. Aluminium nitrate $-\operatorname{Al}\left(\mathrm{NO}_{3}\right)_{3}$
5. Aluminium sulfate $-\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Relative atomic masses $\left(M_{r}\right)$:

- H-1
- AI-27
- Mg-24
- N-14
- C-12
- O-16
- S-32

Independent practice 2

The relative formula mass $\left(M_{r}\right)$ of a Group 2 sulfate is 142 .
Formula $\mathrm{X}_{2} \mathrm{SO}_{4}$
Relative atomic masses $\left(A_{r}\right): S=32, O=16$
a) Calculate the relative atomic mass $\left(A_{r}\right)$ of the Group 2 metal in the metal carbonate.
b) Name the Group 2 metal.

Independent practice 3

1. What is the percentage of fluorine in tin fluoride $\left(\mathrm{SnF}_{2}\right)$?
2. What is the percentage of magnesium in magnesium carbonate $\left(\mathrm{MgCO}_{3}\right)$?
3. What is the percentage of oxygen in aluminium hydroxide $\mathrm{Al}(\mathrm{OH})_{3}$?
4. What percentage of nitrogen in magnesium nitrate $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$?

Relative atomic masses (A_{r}):

- H-1
- AI-27
- Mg-24
- N-14
- C-12
- O-16
- S - -119
- F-19

Independent practice 4

How many grams in:

- 5 mol of CaCO_{3} ?
- 0.01 mol of NaHCO_{3} ?

How many moles are in:

- 303 g of KNO_{3} ?
- 9.80 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

How many:

- atoms are 0.1 mol of carbon?
- molecules are in $0.01 \mathrm{~mol}^{2} \mathrm{CH}_{4}$?
- atoms are in 0.01 mol of CH_{4} ?

Independent practice 5

Balance the following equations:

1. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \longrightarrow \mathrm{HCl}$
2. $\mathrm{CaO}+\mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
3. $\mathrm{KCl}+\mathrm{F}_{2} \longrightarrow \mathrm{KF}+\mathrm{Cl}_{2}$
4. $\mathrm{ZnO}+\mathrm{C} \longrightarrow \mathrm{Zn}+\mathrm{CO}_{2}$
5. $\mathrm{CuSO}_{4}+\mathrm{NaOH} \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}$

Independent practice 6

Iron can be extracted from its ores by heating it with carbon. Some students found that 6.4 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ reacted with 0.72 g of C to produce 4.48 g of Fe and 2.64 g of CO_{2}. Use the masses to deduce the balanced equation.

Independent practice 7

Convert the volumes below to dm^{3} :

1. $20 \mathrm{~cm}^{3}$
2. $600 \mathrm{~cm}^{3}$
3. $100 \mathrm{~cm}^{3}$
4. $0.07 \mathrm{~cm}^{3}$
5. $370 \mathrm{~cm}^{3}$

Convert the volumes below to cm^{3} :

$$
\begin{aligned}
\text { 6. } & 2 \mathrm{dm}^{3} \\
\text { 7. } & 50 \mathrm{dm}^{3} \\
\text { 8. } & 38 \mathrm{dm}^{3} \\
\text { 9. } & 0.8 \mathrm{dm}^{3} \\
\text { 10. } & 6.4 \mathrm{dm}^{3}
\end{aligned}
$$

Independent practice 8

$\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2}$
$\mathbf{8 0} \mathbf{g}$ of Fe reacted with $\mathbf{1 0 0} \mathbf{g}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$. Which reactant is the limiting reactant?

Relative atomic masses $\left(M_{r}\right): F e=56, H=1, O=16, S=32$

Independent practice 1 answers

Calculate the M_{r} of the following:

1. Ethanoic acid $-\mathrm{CH}_{3} \mathrm{COOH} .60$
2. Ethane $-\mathrm{C}_{2} \mathrm{H}_{6} .30$
3. Magnesium Nitrate $-\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} .148$
4. Aluminium nitrate $-\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} .213$
5. Aluminium sulfate $-\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \mathbf{3 4 2}$

Independent practice 2 answers

$$
\begin{aligned}
\mathrm{X}_{2} \mathrm{SO}_{4} & =146 \\
X+X+32+(4 X 16) & =146 \\
X+X+32+64 & =146 \\
X+X+96 & =1146 \\
X+X & =146-96 \\
2 X & =46 \\
X & =46 / 2 \\
X & =23 \\
X & =\text { Sodium }
\end{aligned}
$$

Independent practice 3 answers

1. What is the percentage of fluorine in tin fluoride $\left(\mathrm{SnF}_{2}\right)$? 38/157 $\mathbf{x 1 0 0 \%}=\mathbf{2 4 \%}$
2. What is the percentage of magnesium in magnesium carbonate $\left(\mathrm{MgCO}_{3}\right)$? 24/84 $\times \mathbf{1 0 0 \%}=\mathbf{2 9 \%}$
3. What is the percentage of oxygen in aluminium hydroxide $\mathrm{Al}(\mathrm{OH})_{3}$? 48/73 $\times 100 \%=66 \%$
4. What percentage of nitrogen in magnesium nitrate $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$? 28/148 $\times 100 \%=19 \%$

Relative atomic masses $\left(A_{r}\right)$:

- $\mathrm{H}-1$
- AI-27
- Mg-24
- N-14
- C-12
- O-16
- $\mathrm{Sn}-119$
- F-19

Independent practice 4 answers

How many grams in:

- 5 mol of CaCO_{3} ? $\mathbf{5 \times 1 0 0 = 5 0 0} \mathbf{g}$

How many moles are in:
- 303 g of KNO_{3} ? 303/101 $=3$
- 9.80 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$? 9.8/ $98=0.1$

How many:

- atoms are 0.1 mol of carbon? $\left(6.02 \times \mathbf{1 0}^{\mathbf{2 3}}\right) \times \mathbf{0 . 1}=\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 2}}$
- molecules are in $0.01 \mathrm{~mol}^{2} \mathrm{CH}_{4}$? $\left(6.02 \times 1 \mathbf{1 0}^{\mathbf{2 3}}\right) \times \mathbf{0 . 0 1}=\mathbf{6 . 0 2} \times 10^{\mathbf{2 1}}$
- atoms are in $0.01 \mathrm{~mol}_{\mathrm{mof}} \mathrm{CH}_{4}$? $\left(\mathbf{6 . 0 2} \times \mathbf{1 0}^{\mathbf{2 1}}\right) \times \mathbf{5}=\mathbf{3 . 0 1} \times \mathbf{1 0}^{\mathbf{2 2}}$

Independent practice 5 answers

Balance the following equations:

1. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \longrightarrow \mathbf{2 H C l}$
2. $\mathrm{CaO}+\mathbf{2} \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
3. $2 \mathrm{KCl}+\mathrm{F}_{2} \longrightarrow 2 \mathrm{KF}+\mathrm{Cl}_{2}$
4. $2 \mathrm{ZnO}+\mathrm{C} \longrightarrow 2 \mathrm{Zn}+\mathrm{CO}_{2}$
5. $\mathrm{CuSO}_{4}+\mathbf{2 N a O H} \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}$

Independent practice 6 answers

Convert the volumes below to dm^{3} :

1. $20 \mathrm{~cm}^{3} \quad 0.02 \mathbf{~ d m}^{3}$
2. $600 \mathrm{~cm}^{3}$
$0.6 \mathrm{dm}^{3}$
3. $100 \mathrm{~cm}^{3}$
$0.1 \mathrm{dm}^{3}$
4. $0.07 \mathrm{~cm}^{3} \quad 0.00007 \mathrm{dm}^{3}$
5. $370 \mathrm{~cm}^{3}$
0.37 dm 3

Convert the volumes below to cm^{3} :

$$
\begin{array}{rll}
\text { 6. } & 2 \mathrm{dm}^{3} & 2000 \mathrm{~cm}^{3} \\
\text { 7. } & 50 \mathrm{dm}^{3} & \mathbf{5 0 0 0 0} \mathrm{~cm}^{3} \\
\text { 8. } & 38 \mathrm{dm}^{3} & 38000 \mathrm{~cm}^{3} \\
\text { 9. } & 0.8 \mathrm{dm}^{3} & \mathbf{8 0 0} \mathrm{~cm}^{3} \\
\text { 10. } & 6.4 \mathrm{dm}^{3} & \mathbf{6 3 0 0} \mathrm{~cm}^{3}
\end{array}
$$

Independent practice 7 answer

$$
\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2}
$$

Work out the M_{r}
Take one mass from the question
Work out scale factor
Apply to the other reactant to see how much is needed

56	98	153	2
80	$\begin{array}{\|l} \begin{array}{r} \div 56 \\ \times 80 \end{array} \end{array}$		You need 140 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to react with $\mathbf{8 0} \mathbf{g}$ Fe, but we added 100 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$, so $\mathrm{H}_{2} \mathrm{SO}_{4}$ will run out first.
	140g		

Independent practice 8 answer

$$
\mathrm{Fe}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{H}_{2}
$$

Work out the M_{r}
Take one mass from the question
Work out scale factor
Apply to the other reactant to see how much is needed

