Combined Science - Chemistry - Key Stage 4

Quantitative Chemistry

Review Lesson Higher

Mrs Begum

Periodic Table of Elements

				Key:													
1 H hydrogen 1		rel	ative atomi	c mass – Name –	→ 1 H ← hydrogen 1 ←	Atomic Atomic	symbol (proton ni	umber)									He
7 Li lithium 3	9 Be beryllium 4											B boron 5	C carbon	N nitrogen	16 O oxygen 8	19 F fluorine 9	Ne
Na sodium	Mg magnesium											Al aluminium 13	Si silicon	P phosphorus	32 S sulfur 16	35.5 Cl chlorine	Ar Ar argon 18
39 K potassium 19	Ca calcium 20	SC scandium 21	48 Ti titanium 22	Vanadium 23	Cr chromium	Mn manganese 25	Fe iron 26	Co cobalt 27	59 Ni nickel 28	63.5 Cu copper 29	Zn zinc 30	70 Ga gallium 31	73 Ge germanium 32	75 As arsenic 33	79 Se selenium 34	Br bromine 35	Kr krypton 36
Rb rubidium	Sr strontium	89 Y yttrium 39	91 Zr zirconium 40	Nb niobium	96 Mo molybdenum 42	[97] TC technetium 43	Ru ruthenium	Rh rhodium	Pd palladium	Ag silver	Cd cadmium	115 In indium 49	Sn	Sb antimony	Te	127 iodine 53	Xe xenon 54
133 Cs caesium 55	137 Ba barium 56	La*	178 Hf hafnium 72	181 Ta tantalum	184 W tungsten	186 Re	190 Os osmium 76	192	195 Pt platinum 78	197 Au gold 79	201 Hg mercury 80	204 TI thallium 81	207 Pb	209 Bi bismuth 83	[209] Po polonium 84	[210] At astatine 85	[222] Rn radon 86
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[267] Rf rutherfordium 104	[270] Db dubnium 105	[269] Sg seaborgium 106	[270] Bh bohrium 107	[270] Hs hassium 108	[278] M† meitnerium 109	[281] DS darmstadtium	[281] Rg roentgenium 87	[285]	[286] Nh nihonium 113	[289] FI flerovium 114	[289] MC moscovium 115	[293] LV livermorium 116	[293] TS tennessine 117	[294] Og organesson 118

^{*} The lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omitted.

Relative atomic masses for Cu and Cl have not been rounded to the nearest whole number.

Calculate the M_r of the following:

- 1. Ethanoic acid CH₃COOH
- 2. Ethane C_2H_6
- 3. Magnesium Nitrate $Mg(NO_3)_2$
- 4. Aluminium nitrate $AI(NO_3)_3$
- 5. Aluminium sulfate $Al_2(SO_4)_3$

Relative atomic masses (M_r) :

- H-1
- Al 27
- Mg 24
- N 14
- C 12
- O 16
- S 32

The relative formula mass (M_r) of a Group 2 sulfate is 142.

Formula X₂SO₄

Relative atomic masses (A_r): S = 32, O = 16

- a) Calculate the relative atomic mass (A_r) of the Group 2 metal in the metal carbonate.
- b) Name the Group 2 metal.

- 1. What is the percentage of fluorine in tin fluoride (SnF_2)?
- 2. What is the percentage of magnesium in magnesium carbonate (MgCO $_3$)?
- 3. What is the percentage of oxygen in aluminium hydroxide $AI(OH)_3$?
- 4. What percentage of nitrogen in magnesium nitrate $Mg(NO_3)_2$?

Relative atomic masses (A_r):

- H 1
- Al 27
- Mg 24
- N 14
- C 12
- O 16
- Sn 119
- F 19

How many grams in:

- 5 mol of CaCO₃?
- 0.01 mol of NaHCO₃?

How many moles are in:

- 303 g of KNO_3 ?
- 9.80 g of H₂SO₄?

How many:

- atoms are 0.1 mol of carbon?
- molecules are in 0.01 mol of CH₄?
- atoms are in 0.01 mol of CH₄?

Balance the following equations:

1.
$$H_2 + Cl_2 \longrightarrow HCl$$

2. CaO + HCl
$$\longrightarrow$$
 CaCl₂ + H₂O

3.
$$KCI + F_2 \longrightarrow KF + CI_2$$

4.
$$ZnO + C \longrightarrow Zn + CO_2$$

5.
$$CuSO_4 + NaOH \longrightarrow Cu(OH)_2 + Na_2SO_4$$

Iron can be extracted from its ores by heating it with carbon. Some students found that 6.4 g of Fe_2O_3 reacted with 0.72 g of C to produce 4.48 g of Fe and 2.64 g of CO_2 . Use the masses to deduce the balanced equation.

Convert the volumes below to dm³:

- 1. 20 cm^3
- 2. 600 cm^3
- 3. 100 cm^3
- 4. 0.07 cm^3
- 5. 370 cm^3

Convert the volumes below to cm³:

- 6. $2 \, dm^3$
- 7. $50 \, dm^3$
- 8. $38 \, dm^3$
- 9. $0.8 \, dm^3$
- 10. $6.4 \, dm^3$

Fe +
$$H_2SO_4$$
 \rightarrow FeSO₄ + H_2

80 g of Fe reacted with **100 g** of H_2SO_4 . Which reactant is the limiting reactant?

Relative atomic masses (M_r): Fe = 56, H = 1, O = 16, S = 32

Independent practice 1 answers

Calculate the M_r of the following:

- 1. Ethanoic acid CH₃COOH. **60**
- 2. Ethane C₂H₆. **30**
- 3. Magnesium Nitrate $Mg(NO_3)_2$. **148**
- 4. Aluminium nitrate Al(NO₃)₃. **213**
- 5. Aluminium sulfate $Al_2(SO_4)_3$. **342**

Independent practice 2 answers

$$X_2SO_4 = 146$$

 $X + X + 32 + (4 \times 16) = 146$

$$X + X + 32 + 64 = 146$$

 $X + X + 96 = 1146$

$$X + X = 146 - 96$$

 $2X = 46$

$$X = 46/2$$

$$X = 23$$

Independent practice 3 answers

- 1. What is the percentage of fluorine in tin fluoride (SnF_2)? **38/157** x **100%** = **24%**
- 2. What is the percentage of magnesium in magnesium carbonate (MgCO₃)? **24/84 x 100% = 29%**
- 3. What is the percentage of oxygen in aluminium hydroxide $AI(OH)_3$? **48/73 x 100% = 66%**
- 4. What percentage of nitrogen in magnesium nitrate $Mg(NO_3)_2$? **28/148 x 100% = 19%**

Relative atomic masses (A_r):

- H-1
- Al 27
- Mg 24
- N 14
- C 12
- O 16
- Sn 119
- F 19

Independent practice 4 answers

How many grams in:

- 5 mol of CaCO₃? **5 x 100 = 500g**
- 0.01 mol of NaHCO₃? **0.01 x 84 = 0.084 g**

How many moles are in:

- 303 g of KNO_3 ? 303/101 = 3
- 9.80 g of H_2SO_4 ? 9.8/ 98 = 0.1

How many:

- atoms are 0.1 mol of carbon? (6.02 x 10^{23}) x 0.1 = 6.02 x 10^{22}
- molecules are in 0.01 mol of CH_{2} ? (6.02 x 10^{23}) x 0.01 = 6.02 x 10^{21}
- atoms are in 0.01 mol of CH_4 ? (6.02 x 10^{21}) x 5 = 3.01 x 10^{22}

Independent practice 5 answers

Balance the following equations:

1.
$$H_2 + Cl_2 \longrightarrow \mathbf{2}HCl$$

2. CaO +
$$2$$
HCl \longrightarrow CaCl₂ + H₂O

3. 2KCl +
$$F_2 \longrightarrow 2$$
KF + Cl_2

5.
$$CuSO_4 + 2NaOH \longrightarrow Cu(OH)_2 + Na_2SO_4$$

Independent practice 6 answers

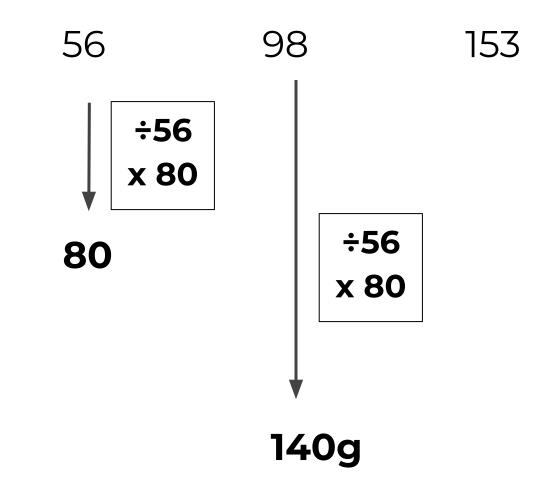
Convert the volumes below to dm³:

7.	20 cm^3	0.02 dm ³
2.	600cm^3	0.6 dm ³
3.	$100 cm^3$	0.1 dm ³
4.	$0.07 cm^3$	0.00007 dm ³
5.	370 cm^3	0.37 dm ³

Convert the volumes below to cm³:

2000 cm ³	$2 dm^3$	6.
50000 cm	$50 dm^3$	7.
38000 cm ³	$38 dm^3$	8.
800 cm ³	$0.8 dm^3$	9.
6300 cm ³	$6.4 dm^3$	10.

Independent practice 7 answer


Fe +
$$H_2SO_4$$
 \rightarrow FeSO₄ + H_2

Work out the M_r

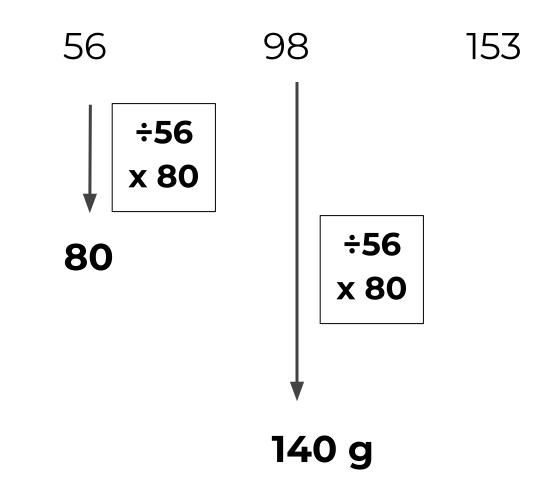
Take one mass from the question

Work out scale factor

Apply to the other reactant to see how much is needed

You need 140 g of H_2SO_4 to react with 80 g Fe, but we added 100 g of H_2SO_4 , so H_2SO_4 will run out first.

Independent practice 8 answer


Fe +
$$H_2SO_4$$
 \rightarrow FeSO₄ + H_2

Work out the M_r

Take one mass from the question

Work out scale factor

Apply to the other reactant to see how much is needed

You need 140 g of H_2SO_4 to react with 80 g Fe, but we added 100 g of H_2SO_4 , so H_2SO_4 will run out first.

