
1

Lesson 4: The famous for

Python programming with sequences of data

Computing

Rebecca Franks

Materials from the Teach Computing Curriculum created by the National Centre for Computing Education

 Worked Example 1 .Iterating over items

2

This program uses for to iterate over a list of dice rolls and print the value of each item in the
list.

 Worked Example 2 .Counting selected items

3

This program uses for to iterate over a list of dice rolls and count the number of items with a
value greater than 3.

 Worked Example 3 .Collecting selected items
into a list

4

This program uses for to iterate over a list of dice rolls and collect the items with a value
greater than 3 into a new list named selection.

 Task 1 .

5

Step 1

Open this program oaknat.uk/comp-py-words-1 in Repl.it

Line 1 imports the dictionary, i.e. the list of words that the program will use. This is not a
standard Python component. The list has been created specifically to allow you to perform
these tasks.

1
2
3

from ncce.data import dictionary
nb_words = len(dictionary)
print(nb_words, "english words in the list")

 Task 1 .

6

Step 2

Extend the program so that it first prompts the user to enter a word length (number of
characters), and then iterates over the dictionary, i.e. the list of words, and counts the number
of words of this length.

Tip: Refer to Worked example 2 about counting the number of selected items in a list.

Tip: Use the len function to retrieve the length of each word in the dictionary.

 Task 1 .

7

Here is some example input and output to show how the program should run:

Example
Note: Use this example to check your program. This is the output your program should
produce when searching for 12-letter words.

The program displays a
prompt and waits for
keyboard input.

Length of words to search for:

The user types a reply. 12

The program displays the
number of words of the given
length.

There are 29126 words with 12 letters

 Task 2 .

8

Open this program oaknat.uk/comp-py-words-2 in Repl.it

Extend the program so that it first prompts the user for a string (a piece of text) to search for,
and then iterates over the list of words in the dictionary and collects the ones that contain this
piece of text into a new list.

In the end, the program should display the collected words, one word per line.

Tip: Refer to Worked example 3 about collecting selected items into a new list. Worked
example 1 should help with displaying the contents of the new list.

Tip: Use the in operator to check if a word contains a piece of text.

1 from ncce.data import dictionary

 Task 2 .

9

Here is some example input and output to show you how the program should work:

Example

The program displays a prompt and waits for
keyboard input.

Text to search for:

The user types a reply. python

The program displays the words that contain
the particular substring.

python pythonissa
pythoness pythonist
pythonic pythonize
pythonical pythonoid
pythonid pythonomorph
pythonidae pythonomorpha
pythoniform pythonomorphic
pythoninae pythonomorphous
pythonine pythons
pythonism

Heartbeat

10

 Task

11

In this activity, you’ll make a program that processes real ECG (electrocardiogram) data from a
medical database. Your program will go over the data and detect heartbeats.

Step 1

Open this program oaknat.uk/comp-py-ecg-1 in Repl.it

Line 1 imports the load and plot functions from the mitdb_data module. This is not a
standard Python component. It has been created specifically to allow you to perform these
tasks.

The first 100 values will be loaded from the dataset (this is the highlighted 100 in line 2).

1
2
3

from ncce.mitdb_data import load, plot
heartbeat_data = load(100)
plot(heartbeat_data, 'heartbeats.png')

 Task .

12

Step 2

Run the program. It will create a plot of the loaded values in heartbeats.png. You can view this
by clicking on the files list on the left hand side.

As you can see, the values are numerical and can range from -1.0 to 1.0. What you see in this plot
of the first 100 values is a single heartbeat: values steadily rising over zero, reaching a peak, and
then smoothly dropping below zero again.

 Task .

13

Step 3

One way to detect a heartbeat is to look for zero crossings in the data (marked with red dots on
the image on the previous slide). A zero crossing is a point where values change from positive
to negative (or vice versa).

Add the following incomplete code to your program, which will iterate over every value in the
data, making sure (in the last line) that the previous value is also available.

+
+
+
+
+

+

previous = -1.0
for value in heartbeat_data:

 previous = value

 Check for
crossing .

 Task .

14

Step 4

Complete the missing instructions in your program (the labeled box), so that your program
prints the message "heartbeat detected" every time it runs across a value that is positive and
its previous value is negative.

Example
Note: Use this example to check your program. This is the output your
program should produce for the first 100 values from the data set.
The program displays the
message once, i.e. there is
one heartbeat in the data
loaded.

heartbeat detected

 Task .

15

Step 5

Modify line 2 in your existing program, so that 1000 data values are loaded from the dataset,
instead of 100.

2❇
from ncce.mitdb_data import load, plot
heartbeat_data = load(1000)
plot(heartbeat_data, 'heartbeats.png')

 Task .

16

Step 6

Run your program. How many heartbeats is it detecting?

If you want to know if the number of heartbeats detected is correct, check the updated plot of
the loaded values in plot.png. You can count how many heartbeats are contained in the data.

