Triple - Chemistry - Key Stage 4
Quantitative Chemistry

Review Lesson

Triple

Mrs Begum

Periodic Table of Elements

$\underset{\substack{\text { mposom }}}{\text { H }}$																	
$\underset{\text { untim }}{\substack{\text { unim }}}$	$\dot{\mathrm{Be}}$												$\underbrace{\text { cid }}_{\text {coico }}$	$\stackrel{14}{\substack{\text { nivean }}}$	${ }_{\substack{\text { copem } \\ \text { arem }}}^{16}$		
	$\underset{\text { momg }}{\mathbf{m}_{12}^{24}}$												${ }_{\substack{\text { Sition }}}^{28}$		$\underset{\substack{\text { cisum }}}{\substack{\text { 32 }}}$		
	$\underbrace{40}_{\substack{\text { cotaim } \\ \text { coio }}}$	${ }_{\substack{\text { cenctim } \\ \text { cent }}}^{45}$	$\underset{\substack{\text { mamimim } \\ \text { mid }}}{48}$				$\begin{aligned} & 56 \\ & \text { Fen } \end{aligned}$				$\underbrace{\substack{\text { c }}}_{\substack{\text { zn } \\ \text { and } \\ \text { 30 }}}$						
$\underset{\substack{\text { Rbb } \\ \text { nism }}}{\text { dit }}$													$\mathbf{S n}_{\mathrm{n}}^{1 \mathrm{~m}}$				
													$\underset{\substack { \text { per } \\ \begin{subarray}{c}{207 \\ 82{ \text { per } \\ \begin{subarray} { c } { 2 0 7 \\ 8 2 } } \\ {\hline 6}\end{subarray}}{ }$				(122]
(int																	

* The lanthanides (atomic numbers 58-71) and the Actinides (atomic numbers 90-103) have been omitted.

Relative atomic masses for $\mathbf{C u}$ and $\mathbf{C l}$ have not been rounded to the nearest whole number.

Independent practice 1

Calcium nitrate can be made by reacting calcium carbonate with nitric acid.
$\mathrm{CaCO}_{3}+\mathrm{HNO}_{3} \longrightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

1. What is the maximum theoretical yield that can be made from 500 tonnes of calcium carbonate?
2. What is the percentage yield if the actual yield is 720 tonnes?

Independent practice 2

Ethanol is manufactured in two ways:
Reaction 1: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq}) \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})+2 \mathrm{CO}_{2}(\mathrm{~g})$
Reaction 2: $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I})$

Calculate the atom economy for both reactions. Show your working out.
Which method should they choose based purely on atom economy?

Independent practice 3

$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
A student added $20.0 \mathrm{~cm}^{3}$ of sodium hydroxide of unknown concentration to a conical flask.

The student carried out a titration to find out the volume of $0.200 \mathrm{~mol} / \mathrm{dm}^{3}$ sulfuric acid needed to neutralise the sodium hydroxide.
The student carried out five titrations. His results are shown in the table.

Concordant results are within $0.10 \mathrm{~cm}^{3}$ of each other.

Titration	1	2	3	4	5
Volume of O.100 mol/dm					
sulfuric acid in cm^{3}	17.40	18.15	17.05	17.15	17.15

Use the student's concordant results to work out the mean volume of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ sulfuric acid added.

Calculate the concentration of the sodium hydroxide.

Give your answer to three significant figures.

Independent practice 4

1. What volume do the following take up at room temp and pressure:
a. 10 g methane $\left(\mathrm{CH}_{4}\right)$
b. 1000 g of carbon dioxide $\left(\mathrm{CO}_{2}\right)$
2. Calculate the number of moles in:
a. $14 \mathrm{dm}^{3}$ of nitrogen $\left(\mathrm{N}_{2}\right)$
b. $2.4 \mathrm{dm}^{3}$ of methane $\left(\mathrm{CH}_{4}\right)$

Independent practice 5

The reaction that takes place in a car's catalytic converter is shown below. What volume of nitrogen oxide (NO) reacts completely with 50 g of carbon monoxide (CO) at rtp?

$$
2 \mathrm{CO}+2 \mathrm{NO} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}
$$

Independent practice 1 answers

Calcium nitrate can be made by reacting calcium carbonate with nitric acid.

1. What is the maximum theoretical yield that can be made from 500 tonnes of calcium carbonate?
820 tonnes of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ can be made from 5 tonnes of calcium carbonate
2. What is the percentage yield if the actual yield is 720 tonnes? (720 / 820) $\times 100=87.8 \%$

Independent practice 2 answers

Ethanol is manufactured in two ways:
Reaction 1: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}$
Reaction 2: $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

Calculate the atom economy for both reactions. Show your working out.
Reaction 1: $(92 / 180) \times 100=51.1 \%$
Reaction 2: $(92 / 92) \times 100=100 \%$
Which method should they choose based purely on atom economy? Reaction 2 as it has 100\% atom economy.

Independent practice 2

 answers$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

Concentration:

? $\quad 0.02 \mathrm{~mol} /\left(\mathrm{dm}^{3}\right)$

$20 \mathrm{~cm}^{3} \quad 17.12 \mathrm{~cm}^{3}$

 $17.12 / 1000=0.01712 \mathrm{dm}^{3}$Find the number of moles in solution of

known

Moles $=0.02 \times 0.01712 \mathrm{dm}^{3}$ $=0.0003424 \mathrm{~mol}$

```
Moles = Concentration x volume (dm}\mp@subsup{}{}{3}
```

concentration:
Ratio:

Use the ratio to find the number of moles in the solution of unknown
 concentration:
$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ $20 \mathrm{~cm}^{3}$

0.0006848 : 0.0003424

Calculate the concentration of the unknown solution:

Concentration $=$ moles $/$ volume $\left(\mathrm{dm}^{3}\right)$
(mol/dm³)
Volume NaOH in $\mathrm{dm}^{3}=\mathbf{2 0} / 1000=0.02 \mathrm{dm}^{3}$
Concentration $\mathrm{NaOH}=0.0006848 / 0.02=\mathbf{0 . 0 3 4} \mathbf{~ m o l} / \mathbf{d m}^{\mathbf{3}}$

Independent practice 4 answers

1. What volume do the following take up at room temp and pressure:
a. 10 g methane $\left(\mathrm{CH}_{4}\right) \mathbf{1 0 / 1 6} \mathbf{= 0 . 6 2 5}$. Volume of gas $=\mathbf{0 . 6 2 5} \mathbf{x} \mathbf{2 4} \mathbf{d m}^{\mathbf{3}}=\mathbf{1 5} \mathbf{~ d m}{ }^{\mathbf{3}}$
b. 1000 g of carbon dioxide $\left(\mathrm{CO}_{2}\right) \mathbf{1 0 0 / 4 4}=\mathbf{2 2 . 7 3}$. Volume of gas $=\mathbf{2 2 . 7 3} \times \mathbf{2 4} \mathbf{~ d m}^{\mathbf{3}}=$ 545.5 dm 3
2. Calculate the number of moles in:
a. $14 \mathrm{dm}^{3}$ of nitrogen $\left(\mathrm{N}_{2}\right) \mathbf{1 4} \mathbf{~ d m}^{\mathbf{3}} / \mathbf{2 4} \mathbf{~ d m}^{\mathbf{3}} \mathbf{= 0 . 5 8}$ moles
b. $2.4 \mathrm{dm}^{3}$ of methane $\left(\mathrm{CH}_{4}\right) \mathbf{2 . 4 ~ d \mathbf { d m } ^ { 3 }} \mathbf{/ 2 4} \mathbf{~ d m}{ }^{3}=\mathbf{0 . 1}$ moles

Independent practice 5 answers

The reaction that takes place in a car's catalytic converter is shown below. What volume of nitrogen oxide (NO) reacts completely with 50 g of carbon monoxide (CO) at rtp?

1. Balanced symbol equation
2. M_{r} of carbon monoxide
3. Calculate the number of moles of CO burned
4. Look at the ratio to work out the moles of NO
5. Calculate the volume of NO needed
$2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$
M_{r} of $C O=28$
50/28 $=1.79$ moles
Ratio is $1: 1$ so there are 1.79 moles of NO

Volume $=1.79 \times 24=42.96 \mathrm{dm}^{3}$

