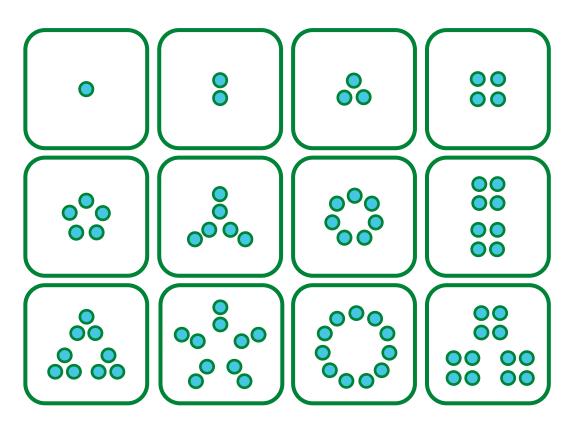
Try this

1) Fill in the gaps in the following equations:

$$12 = 2 \times \underline{\hspace{1cm}} \times \underline{\hspace{1cm}}$$

$$18 = 3 \times _ \times _$$

$$36 = 6 \times _ \times _$$


$$36 = 2 \times \underline{} \times \underline{} \times \underline{}$$

2) How many ways can you fill in the following blanks?

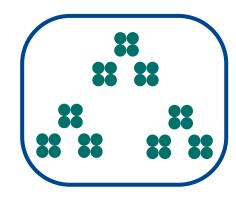
Connect

Representing Integers

1) What do you notice about multiples of 3?

2) What do you notice about multiples of 4?

3) Is there another way you could have drawn any of these diagrams?

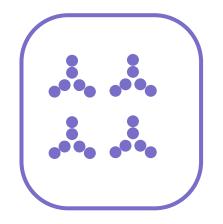


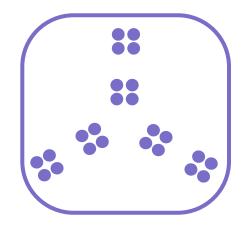
Connect

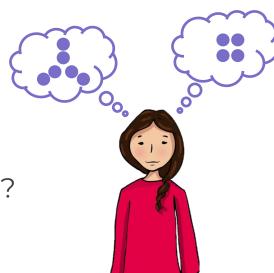
Two students discuss their strategy for counting dots in this diagram. Who do

you agree with and why?

I can see 3 lots of 12


Count the dots in a different way



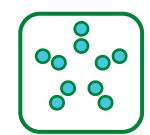


Connect

A student drew two different pictures to visualise: 4 x 6

Can you see how she created the diagrams?

Draw a similar diagram to represent 5 x 3

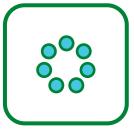

Independent task

Fill in the gaps. Some of the missing words/numbers may be used more than once

Representing a number using diagrams can reveal some of its properties.

prime

One of the ways of representing ____ could be:



factors

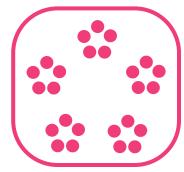
This representation shows that _____ and ____ are both factors of ____.

two

One way of representing 7 could be:

This representation helps to show that 7 only has ____ factors and is therefore _____

Explore


What sequence of numbers are the groups of dots representing?

What could the next pattern look like?

What can you tell about the numbers from the representations?

