Try this

1) Fill in the gaps in the following equations:

2) How many ways can you fill in the following blanks?

$$
36=\ldots \times \ldots \times \ldots
$$

Connect

Representing Integers

1) What do you notice about multiples of 3 ?
2) What do you notice about multiples of 4 ?
3) Is there another way you could have drawn any of these diagrams?

Connect

Two students discuss their strategy for counting dots in this diagram. Who do you agree with and why?

Count the dots in a different way

Connect

A student drew two different pictures to visualise: $4 \times$
6

Draw a similar diagram to represent 5×3

Independent task

Fill in the gaps. Some of the missing words/numbers may be used more than once
Representing a number using diagrams can reveal some of its properties.

One of the ways of representing \qquad could be:

This representation shows that \qquad and \qquad are both factors of \qquad .

One way of representing 7 could be:
This representation helps to show that 7 only has \qquad factors and is therefore \qquad -

Explore

What sequence of numbers are the groups of dots representing?

What could the next pattern look like?
What can you tell about the numbers from the representations?

