Combined science - Physics - Key stage 4 -Particle Model of Matter

Density of Solids Worksheet

Mr Charman
1

Exam questions

1. Different states of matter have different densities.

Which of the following shows the states of matter in density order, starting with the lowest density?

A Solid - liquid - gas
B Solid - gas - liquid
C Gas-liquid-solid
D Liquid - gas - solid
OCR, Gateway Physics A, Paper J249/01, June 2019.

Exam questions

2. An object has a volume of $1.5 \mathrm{~m}^{3}$ and a mass of 3.0 kg .

What is the density of the object?
Use the equation: density $=$ mass \div volume
A $0.5 \mathrm{~kg} / \mathrm{m}^{3}$
B $2.0 \mathrm{~kg} / \mathrm{m}^{3}$
C $4.5 \mathrm{~kg} / \mathrm{m}^{3}$
D $6.0 \mathrm{~kg} / \mathrm{m}^{3}$

OCR, Gateway Physics A, Paper J249/01, June 2019.

Exam questions

A piece of metal has a volume of $2.0 \times 10^{-5} \mathrm{~m}^{3}$.
The density of the metal is $8.0 \times 103 \mathrm{~kg} / \mathrm{m}^{3}$.
What is its mass?
A. $2.5 \times 10^{-3} \mathrm{~kg}$
B. $4.0 \times 10^{-2} \mathrm{~kg}$
C. $1.6 \times 10^{-1} \mathrm{~kg}$
D. $1.6 \times 10^{5} \mathrm{~kg}$

OCR, Gateway Physics A, Paper J249/03, Specimen.

Exam questions

Wood has a density of $180 \mathrm{~kg} / \mathrm{m}^{3}$.

Calculate the mass of this piece of wood.

OCR, Gateway Physics A, Paper J249/01, Specimen.

Show your working and give the units.

Answers

Answers

1. C
2. B
3. C

Answers

- Conversion of cm to m(1)
- Calculation of volume: $0.2 \times 0.3 \times 1.2=0.072 \mathrm{~m}^{3}$ (1)
- Re-arrangement of formula for mass (1)
- Substitution: $180 \times 0.072(1)$
- Answer: 13 (1)
- Units: kg (1)

In lesson questions

Independent practice

1. Calculate the density ρ (in $\mathrm{kg} / \mathrm{m}^{3}$) for each of the following:
a. $\quad m=10 \mathrm{~kg}$ and $V=10 \mathrm{~m}^{3}$
b. $m=160 \mathrm{~kg}$ and $V=0.1 \mathrm{~m}^{3}$
c. $m=220 \mathrm{~kg}$ and $V=0.02 \mathrm{~m}^{3}$
2. A wooden post has a volume of $0.025 \mathrm{~m}^{3}$ and a mass of 20 kg . Calculate its density in $\mathrm{kg} / \mathrm{m}^{3}$.
3. Challenge: A rectangular concrete slab is 0.80 m long, 0.60 m wide and 0.04 m thick.
a. Calculate its volume in m^{3}.
b. The mass of the concrete slab is 180 kg . Calculate its density in $\mathrm{kg} / \mathrm{m}^{3}$.

Independent practice

1. Calculate the mass m (in kg) for each of the following:
a. $\rho=10 \mathrm{~kg} / \mathrm{m}^{3}$ and $V=15 \mathrm{~m}^{3}$
b. $\quad \rho=0.15 \mathrm{~kg} / \mathrm{m}^{3}$ and $V=12.20 \mathrm{~m}^{3}$
c. $\rho=0.006 \mathrm{~kg} / \mathrm{m}^{3}$ and $V=1.005 \mathrm{~m}^{3}$
2. Challenge: What is the mass of the water contained in a typical olympic swimming pool? (length 50 m , width 25 m , depth $3 \mathrm{~m}, \mathrm{\rho}=$ $1000 \mathrm{~kg} / \mathrm{m}^{3}$)

Independent practice

1. Calculate the volume V (in m^{3}) for each of the following:
a. $m=20 \mathrm{~kg}$ and $\rho=10 \mathrm{~kg} / \mathrm{m}^{3}$
b. $m=0.44 \mathrm{~kg}$ and $\rho=0.05 \mathrm{~kg} / \mathrm{m}^{3}$
c. $m=12.20 \mathrm{~kg}$ and $\rho=0.004 \mathrm{~kg} / \mathrm{m}^{3}$
2. An object has a mass of 20000 kg and a density of $5000 \mathrm{~kg} / \mathrm{m}^{3}$. Calculate its volume in m^{3}.
3. Challenge: How many bathtubs of water would be needed to hold the same mass as in the previous question? (bath tubs are typically $2 \mathrm{~m} \times 1$ $\mathrm{m} \times 0.5 \mathrm{~m}$ and water has density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$)
4. Challenge: How many bathtubs of water would be needed to hold the same mass as in the previous question? (bath tubs are typically $2 \mathrm{~m} \times 1 \mathrm{~m} \times 0.5 \mathrm{~m}$ and water has density of $1000 \mathrm{~kg} / \mathrm{m}^{3}$)

Independent practice

1. Calculate the density ρ (in $\mathrm{kg} / \mathrm{m}^{3}$) for each of the following:
a. $m=10 \mathrm{~g}$ and $V=10 \mathrm{~cm}^{3}$
b. $m=25 \mathrm{~g}$ and $V=200 \mathrm{~cm}^{3}$
2. Calculate the density ρ (in $\mathrm{g} / \mathrm{cm}^{3}$) for each of the following:
a. $m=10 \mathrm{~kg}$ and $V=5 \mathrm{~m}^{3}$
b. $m=0.015 \mathrm{~kg}$ and $V=0.0050 \mathrm{~m}^{3}$
