The gravitational potential energy store - worksheet

Dr Fishwick

Q1.

A rock climber of mass 90 kg is climbing a boulder.
Calculate the change in gravitational potential energy of the climber when he moves 25 m vertically downwards
gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$
Show clearly how you work out your answer

Q2.

A crane raises a concrete block vertically from 10 m to 45 m .

The mass of the concrete block is 800 kg.

Calculate the change in gravitational potential energy for the rollercoaster. State the unit

Gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$.
(4)

Answers

Q1.

GPE $=$ mass \times gravitational field strength height
GPE $=90 \times 10 \times 25 \quad 1$
22500 (J) 1

Q2.

height change $=45-10=35$ 1
GPE $=$ mass \times gravitational field strength \times height change
$G P E=800 \times 9.8 \times 35$
$=205800 \quad 1$
Unit $=$ J or Joules. kJ can be accepted if the answer given is 205.8 kJ

In lesson questions

The following slides were the questions used throughout the lesson.

Independent practice

1. Define gravitational potential energy store.
a. The \qquad stored due to the \qquad of an object in a \qquad field
2. What does g measure?
a. keywords: Strength, gravitational
3. What will happen to GPE if you double the height of an object?
4. How can a 5 kg object at 10 m above the surface of the Earth have the same GPE value as a 5 kg object held above the surface of the Moon?

Review

1. Define gravitational potential energy store. The energy stored due to the position of an object in a gravitational field
2. What does g measure? The gravitational field strength
3. What will happen to GPE if you double the height of an object? The energy stored in the GPE store will doubled.
4. How can a 5 kg object at 10 m above the surface of the Earth have the same GPE value as a 5 kg object held above the surface of the Moon? It needs to be held higher as the Moon has a weaker gravitational field strength

Independent practice

For all of these questions, assume $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg}$, unless stated.

1. Find the gravitational potential energy stored when an apple of mass 0.23 kg, 65 m above the Earth's surface.
2. A cable car of mass 4500 kg is suspended 1200 m above the Earth's surface. Find the gravitational potential energy stored.
3. Challenge: An astronaut lifts a golf ball 2.6 m above the Moon's surface. If the golf ball's mass is 200 g , find the gravitational potential energy stored. Assume $\mathrm{g}=1.63 \mathrm{~N} / \mathrm{kg}$.
4. Challenge: An aeroplane flies over Britain at a height of 6.8 km . If its mass is 3500 kg , find the gravitational potential energy stored in kJ.

Review

For all of these questions, assume $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg}$, unless stated.

1. Find the gravitational potential energy stored when an apple of mass 0.23 kg, 65 m above the Earth's surface. 150 J (146.51)
2. A cable car of mass 4500 kg is suspended 1200 m above the Earth's surface. Find the gravitational potential energy stored. $\mathbf{5 2 9 2 0 0 0 0 ~ J o r ~} 5.3 \times 10^{7} \mathbf{~ J}$
3. Challenge: An astronaut lifts a golf ball 2.6 m above the Moon's surface. If the golf ball's mass is 200 g , find the gravitational potential energy stored. Assume g = $1.63 \mathrm{~N} / \mathrm{kg} . \mathbf{0 . 8 5} \mathrm{J}$
4. Challenge: An aeroplane flies over Britain at a height of 6.8 km . If its mass is 3500 kg, find the gravitational potential energy stored in kJ. 233 kJ (233240 kJ)

Independent practise

1. A helicopter hovers 580 m above a field and 96000000 J of gravitational potential energy is stored. Assuming g $=9.8 \mathrm{~N} / \mathrm{kg}$, find the helicopter's mass.
2. What is the mass of a satellite 250000 m above the Moon's surface if 1250000 J of gravitational potential energy is stored?

Assume g on the Moon $=1.63 \mathrm{~N} / \mathrm{kg}$.
3. A parcel is suspended 120 m above the Earth's surface. Assuming $\mathrm{g}=9.8$ N / kg, what is the mass of the buzzard if the gravitational potential energy stored is 5400 J ?

Independent practice

1. Challenge A probe is travelling above the surface of Mars at a height of 390 km. Assuming g on Mars is $3.71 \mathrm{~N} / \mathrm{kg}$, find the mass of the probe if its gravitational potential energy store is 28 MJ .

Review

1. A helicopter hovers 580 m above a field and 96000000 J of gravitational potential energy is stored. Assuming g $=9.8 \mathrm{~N} / \mathrm{kg}$, find the helicopter's mass. 17000 kg (16889 kg)
2. What is the mass of a satellite 250000 m above the Moon's surface if

1250000 J of gravitational potential energy is stored? Assume g on the Moon $=$ 1.63 N/kg. 3.1 kg (3.06 kg)
3. A parcel is suspended 120 m above the Earth's surface. Assuming $\mathrm{g}=9.8$ N / kg, what is the mass of the buzzard if the gravitational potential energy stored is 5400 J ? $4.6 \mathbf{~ k g ~ (~} 4.59 \mathrm{~kg}$)

Review

1. Challenge A probe is travelling above the surface of Mars at a height of 390 km. Assuming g on Mars is $3.71 \mathrm{~N} / \mathrm{kg}$, find the mass of the probe if its gravitational potential energy store is $28 \mathrm{MJ} .20 \mathbf{~ k g ~ (1 9 . 4 ~ k g) ~}$

Independent practice

1. A helicopter with a mass of 10500 kg has a gravitational potential energy store of 48 900J. Find its height above the Earth's surface. Assume $9=9.8$ N / kg.
2. What height must we raise a 65 kg astronaut above the surface of the Moon in order to cause 25000 J of gravitational potential energy to be stored? Assume g on the Moon is $1.63 \mathrm{~N} / \mathrm{kg}$.
3. Challenge: Find the height of a sparrow, with a mass of 240 g , above the Earth's surface if the gravitational potential energy stored is 4.4 kJ . Assume $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg}$.

Independent practice

1. Challenge: An arrow with a mass of 500 g is fired straight up in the air and has a maximum store of 0.2 kJ . What height does it reach? Assume $\mathrm{g}=9.8$ N / kg.

Review

1. A helicopter with a mass of 10500 kg has a gravitational potential energy store of 48 900J. Find its height above the Earth's surface. Assume $9=9.8$ N/kg. 0.5 m (0.48 m)
2. What height must we raise a 65 kg astronaut above the surface of the Moon in order to cause 25000 J of gravitational potential energy to be stored? Assume g on the Moon is $1.63 \mathrm{~N} / \mathrm{kg}$. 240 m (236 m)
3. Challenge: Find the height of a sparrow, with a mass of 240 g , above the Earth's surface if the gravitational potential energy stored is 4.4 kJ . Assume $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg} .1900 \mathrm{~m}$ ($\mathbf{1 8 7 0 \mathrm { m } \text {) }) ~}$

Review

1. Challenge: An arrow with a mass of 500 g is fired straight up in the air and has a maximum store of 0.2 kJ . What height does it reach? Assume $\mathrm{g}=9.8$ $\mathrm{N} / \mathrm{kg} .41 \mathrm{~m}$ (40. 8 m)
