Enlargement Lesson 2 of 4
 Downloadable Resource

Miss Kidd-Rossiter

Try this

Jasmin and Zaki are drawing enlargements of the triangle shown.
All the triangles they draws have integer side lengths.

vvnat are the side lengths of their triangles? How many triangles with integer side lengths can you draw with perimeter $<100 \mathrm{~cm}$?

Connect

Independent task

1. For this pair of rectangles, one is an enlargement of the other.
a. State the ratio between the side lengths $A B$ and $E F$.
b. State the constant of proportionality between rectangle ABCD and rectangle EFGH.
c. Find the length of side FG.

Independent task

2. The side lengths of pairs of triangles are shown in parts a. to d.
a. Explain if the pairs of triangles are enlargements of each other or not
b. If they are, find all the ratios within the triangles and the constant of proportionality between the two triangles

a	Triangle ABC $\mathrm{AB}=4 \mathrm{~cm} \mathrm{BC}=7 \mathrm{~cm} \mathrm{AC}=6 \mathrm{~cm}$	Triangle DEF $D E=16 \mathrm{~cm} E F=28 \mathrm{~cm} D F=24 \mathrm{~cm}$
b.	Triangle GHI $\mathrm{GH}=3 \mathrm{~cm} \mathrm{HI}=8 \mathrm{~cm} \mathrm{GI}=10 \mathrm{~cm}$	Triangle JKL JK $=1.5 \mathrm{~cm} \mathrm{KL}=4 \mathrm{~cm} \mathrm{JL}=5.5 \mathrm{~cm}$
c.	Triangle MNP $\mathrm{MN}=3 \mathrm{~cm} \mathrm{NP}=11 \mathrm{~cm} \mathrm{MP}=9 \mathrm{~cm}$	Triangle QRS $\mathrm{QR}=4.5 \mathrm{~cm} \mathrm{RS}=16.5 \mathrm{~cm} \mathrm{QS}=13.5 \mathrm{~cm}$
d.	Triangle TUV $T U=8 \mathrm{~cm} U V=7 \mathrm{~cm} T V=3.5 \mathrm{~cm}$	Triangle XYZ $X Y=20 \mathrm{~cm} \mathrm{YZ}=17.5 \mathrm{~cm} \mathrm{XZ}=9 \mathrm{~cm}$

Independent task

3. For this pair of pentagons, one is an enlargement of the other.
a. State the ratio between the side lengths of the bases of the pentagons.
b. State the constant of proportionality
c. Find the missing lengths.

10 mm

Explore

Zaki is using sticks to form shapes.
He has lots of the sets of sticks shown.
8 cm

6 cm
$\frac{4.5 \mathrm{~cm}}{4 \mathrm{~cm}}$
$\frac{3 \mathrm{~cm}}{7 \mathrm{2cm}}$
$\frac{1 \mathrm{~cm}}{}$

