# Exploring expressions containing two variables <br> Independent Task 

Ms Bridgett

## Try this



A ruler costs 20p.

Binh has $\mathbf{£ 2}$ exactly to spend on maths equipment.
She could buy 4 pens and $\mathbf{2}$ rulers. What other combinations could she buy?
What if she doesn't have to spend exactly $£ 2$ ?

## Connect

A ruler costs $20 p$ and pen costs 40 p.
We have two variables: the number of pens bought and the number of rulers bought.
Let $\mathbf{p}$ equal the number of pens bought.
Let $\mathbf{r}$ equal the number of rulers bought.

What is the total cost when $\mathbf{p}=\mathbf{1}$ and $\mathbf{r}=\mathbf{1}$ ?

What is the total cost when $\mathbf{p = 2}$ and $\mathbf{r = 2}$ ?

## Independent task

|  | P |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |
| 1 | 60 |  |  |  |
| 2 |  | 120 |  |  |
| 3 |  |  |  |  |
| 4 |  |  |  |  |
| 5 |  |  |  |  |
|  |  |  |  |  |

Fill in the table (in pence) to show the cost of different numbers of items.
What patterns do you notice?
Can you explain why these patterns happen?

## Explore

In the previous example, $\mathbf{p}$ was equal to the number of pens bought and $\mathbf{r}$ was equal to the number of rulers bought.

Now Binh buys 30 pens and 20 rulers.
Let $\mathbf{p}$ equal the cost of a pen and let $\mathbf{r}$ equal the cost of a ruler.
She spends less than $£ 1$.


What could the cost of the pen $(p)$ and the cost of the ruler $(r)$ have been?
How many different solutions are there?

