Computing

Lesson 5: Sonic Playground

Data Representation

Dharini Krishnamoorthy

Task 1 - Representation Size

The factors that determine the representation size of a piece of sound are its sampling rate (how many samples per second it comprises), its sample size (how many bits or bytes are used to represent the level of each sample), its duration (how many seconds the piece of sound lasts for) and the number of channels.

Representation size	Sampling rate	\times	Sample size	\times	Duration		Channels
total bits for a	samples		bits in a		seconds		
piece of sound	in a		sample		of sound		
	second						

Task 1 - Representation Size

Worked Example: What is the representation size, in megabytes, of 1 minute of stereo sound (2 sound channels) with a sampling rate of $48,000 \mathrm{~Hz}$ (48,000 samples per second) and a sample size of 24 bits?
representation $=$ sampling rate \times sample size \times duration size
$=48,000$ samples per $\times 24$ bits per sample $\times 60$ seconds second
= 1,152,000 bits for each second
$\times 60$ seconds

Task 1 - Representation Size

```
representation = sampling rate }\times\mathrm{ sample size }\times\mathrm{ duration
size
= 144,000 bytes for each second }\times60\mathrm{ seconds
= 8,640,000 bytes in
total
= 8.6 megabytes (MB) in total
```

There are 2 channels, so this result should be doubled, and the final answer is 17.2MB.

Task 1 - Representation Size

Part 1: Compute representation size.
Assume that you have a digital recording of a sound. The duration is 1 second, sampling rate is 8,000 samples per second and the sample size is 1 byte per sample.

Steps	Instructions
Use this information to compute the number of bytes required to represent this sound.	Write your answer here:
Convert this size to kilobytes.	Write your answer here:

Task 1 - Representation Size

Part 2: Compute representation size for clarinet.wav file.

Steps	Instructions
Open the sound file clarinet.wav.	Write your answer here:
The duration is 10 seconds.	Write your answer here:
The sampling rate is 44,100 samples per second.	
The sample size is 16 bits per sample.	
It has two channels.	
Use this information to compute the number of bits required to represent this sound.	

Task 1 - Representation Size

Part 2: Compute representation size for clarinet.wav file.

Steps Instructions

Convert this size to bytes or kilobytes.

Right-click on the sound file clarinet.wav and view its Properties.

Write your answer here:

What is the actual size of the file?
Is the size that you computed in the previous Write your answer here:
step identical (or even similar) to the actual size of the file?

Task 2- Sound Editing Challenges

Challenge 1:

Open the sound file count.wav, which contains a recording of the numbers from one to ten. Cut, copy, paste, and delete the individual words, in order to rearrange them into a countdown.

Challenge 2:

Open the sound file scale.wav, which contains the sound of eight successive musical notes: C, D, E, F, G, A, B, and then a last, higher C. Cut, copy, paste, and delete the individual notes, in order to rearrange them into a simple song.
For example, the notes C, C, G, G, A, A, G are the first few notes of Twinkle, Twinkle, Little Star (hear an example in twinkle.wav). If you'd like to go one step further, the next notes $\operatorname{are} F, F, E, E, D, D, C$.

Task 2-Sound Editing Challenges

Challenge 3:

Open the sound file audiovisual.wav, where you can hear Maja talk about her preferences:
I like editing sounds a lot more than editing images.
Swap the words "sounds" and "images" in that recording, so that it sounds like Maja has changed her mind (hear an example in audiovisual-new.wav):
I like editing images a lot more than editing sounds.

Challenge 4:

Open the sound file count.wav and make each successive word have a higher volume and a lower pitch.

Task 2- Sound Editing Challenges

Challenge 5:

The table below contains a few words, grouped together in four different categories.

Common:	I, you, it, a, the, if, not, in, to, for, with, and
Verbs:	am, is, are, have, go, like, look, put
Nouns:	water, children, ice cream, sea, street, comet, butterfly, giant
Adjectives:	good, wonderful, delicious, warm, spectacular
Common:	I, you, it, a, the, if, not, in, to, for, with, and

Think of a sentence that you'd like to make with these words. It doesn't need to be too long; it doesn't even need to make complete sense! You can find recordings of these words in the sound file words.wav. Select and delete the words you that you won't need, and then copy, paste, and rearrange the rest to form your sentence.

Task 2- Explorer Task

Open any sound file.
Click on the Zoom tool or press the F4 key. Then click repeatedly on a part of the audio until you can see the individual samples. Click on the Draw tool or press the F3 key. Use the tool to modify individual samples.
Do you expect the changes in the audio to be perceptible? Listen to the audio again and check if your answer was correct. Try to explain the result.

Click here to download additional assets for this lesson

