Triple - Chemistry - Key Stage 4
Quantitative Chemistry

Titration calculations

Mrs. Begum

Periodic Table of Elements

$\underset{\substack{\text { mposom }}}{\text { H }}$																	
$\underset{\text { untim }}{\substack{\text { unim }}}$	$\dot{\mathrm{Be}}$												$\underbrace{\text { cid }}_{\text {coico }}$	$\stackrel{14}{\substack{\text { nivean }}}$	${ }_{\substack{\text { copem } \\ \text { arem }}}^{16}$		
	$\underset{\text { momg }}{\mathbf{m}_{12}^{24}}$												${ }_{\substack{\text { Sition }}}^{28}$		$\underset{\substack{\text { cisum }}}{\substack{\text { 32 }}}$		
	$\underbrace{40}_{\substack{\text { cotaim } \\ \text { coio }}}$	${ }_{\substack{\text { cenctim } \\ \text { cent }}}^{45}$	$\underset{\substack{\text { mamimim } \\ \text { mid }}}{48}$				$\begin{aligned} & 56 \\ & \text { Fen } \end{aligned}$				$\underbrace{\substack{\text { c }}}_{\substack{\text { zn } \\ \text { and } \\ \text { 30 }}}$						
$\underset{\substack{\text { Rbb } \\ \text { nism }}}{\text { dit }}$													$\mathbf{S n}_{\mathrm{n}}^{1 \mathrm{~m}}$				
													$\underset{\substack { \text { per } \\ \begin{subarray}{c}{207 \\ 82{ \text { per } \\ \begin{subarray} { c } { 2 0 7 \\ 8 2 } } \\ {\hline 6}\end{subarray}}{ }$				(122]
(int																	

* The lanthanides (atomic numbers 58-71) and the Actinides (atomic numbers 90-103) have been omitted.

Relative atomic masses for $\mathbf{C u}$ and $\mathbf{C l}$ have not been rounded to the nearest whole number.

Warm up

- What do we mean by 'concentration'?
- What are the units for concentration?
- How many cm^{3} in $1 \mathrm{dm}^{3}$?
- If a solution has a concentration of $1.5 \mathrm{~mol} / \mathrm{dm}^{3}$, how many moles are in $22 \mathrm{~cm}^{3}$?
- What is the concentration of a solution that has 0.02 moles in $20 \mathrm{~cm}^{3}$?

Task 1

Calculate the mean and the uncertainty in these two sets of values:

Attempt	Volume of acid added $\left(\mathbf{c m}^{\mathbf{3}}\right)$
1	12.5
2	12.4
3	12.7
4	12.5
5	12.8

Attempt	Volume of acid added $\left(\mathbf{c m}^{\mathbf{3}}\right)$
1	23.7
2	23.5
3	23.7
4	23.8
5	23.2

Task 2

1. $15.7 \mathrm{~cm}^{3}$ of HCl completely neutralised $25 \mathrm{~cm}^{3}$ of LiOH . The HCl was $2 \mathrm{~mol} / \mathrm{dm}^{3}$. The equation is: $\mathrm{LiOH}+\mathrm{HCl} \longrightarrow \mathrm{LiCl}+\mathrm{H}_{2} \mathrm{O}$

Calculate the concentration of the LiOH .
2. In a titration, $25.00 \mathrm{~cm}^{3}$ of a solution of hydrochloric acid reacted with $18.40 \mathrm{~cm}^{3}$ of sodium hydroxide solution of concentration $0.15 \mathrm{~mol} / \mathrm{dm}^{3}$.

The equation which represents the reaction is:
$\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
Calculate the concentration of hydrochloric acid in mol/dm³

Task 3

$15.8 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ completely neutralised $20 \mathrm{~cm}^{3}$ of NaOH . The NaOH was $1.5 \mathrm{~mol} / \mathrm{dm}^{3}$. The equation is: $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$

Calculate the concentration of the of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Question 1

A student titrated $20 \mathrm{~cm}^{3}$ portions of dilute sulfuric acid with a $0.205 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide solution.

The table below shows the student's results:

Titration	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Volume of sodium hydroxide solution in cm^{3}	21.50	19.10	20.10	20.15	20.15

The equation for the reaction is: $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

- Calculate the concentration of the sulfuric acid in mol/dm³.

Use only the student's concordant results.
Concordant results are those within $0.10 \mathrm{~cm}^{3}$ of each other.

Warm up answers

- What do we mean by 'concentration'? The mass of dissolved solute per unit volume
- What are the units for concentration? $\mathbf{g} / \mathbf{d m}^{3}$ or mol/dm ${ }^{3}$
- How many cm^{3} in $1 \mathrm{dm}^{3}$? $\mathbf{1 0 0 0} \mathbf{~ c m}^{\mathbf{3}}$ in $\mathbf{1 ~ d m}{ }^{\mathbf{3}}$
- If a solution has a concentration of $1.5 \mathrm{~mol} / \mathrm{dm}^{3}$, how many moles are in $22 \mathrm{~cm}^{3}$?

0.033 moles

- What is the concentration of a solution that has 0.02 moles in $20 \mathrm{~cm}^{3}$? $\mathbf{1 ~ m o l} / \mathbf{d m}^{\mathbf{3}}$ (1 M)

Task 1 answers

Calculate the mean and the uncertainty in these two sets of values:

Attempt	Volume of acid added $\left(\mathbf{c m}^{\mathbf{3}}\right)$
1	12.5
2	12.4
3	12.7
4	12.5
5	12.8

Mean $=(12.5+12.4+12.5) / 3=12.5$ Uncertainty $=(12.5-12.4) / 2=0.05$

Attempt	Volume of acid added $\left(\mathbf{c m}^{3}\right)$
1	23.7
2	23.5
3	23.7
4	23.8
5	23.2

Mean $=(23.7+23.7+23.8) / 3=23.7$
Uncertainty $=(23.8-23.7) / 2=0.05$

Task 2 answers

1. $15.7 \mathrm{~cm}^{3}$ of HCl completely neutralised $25 \mathrm{~cm}^{3}$ of LiOH . The HCl was $2 \mathrm{~mol} / \mathrm{dm}^{3}$. The equation is: $\mathrm{LiOH}+\mathrm{HCl} \longrightarrow \mathrm{LiCl}+\mathrm{H}_{2} \mathrm{O}$

Calculate the concentration of the LiOH .
Convert $14.8 \mathrm{~cm}^{3} \mathrm{in} \mathrm{dm}^{3}=14.8 / 1000=0.0148 \mathrm{dm}^{3}$
Moles $=2 \times 0.0148=0.0296$
Concentration $=0.0296 / 0.02=1.48 \mathrm{~mol} . / \mathrm{dm}^{3}$

Task 2 answers

2. In a titration, $25.00 \mathrm{~cm}^{3}$ of a solution of hydrochloric acid reacted with $18.40 \mathrm{~cm}^{3}$ of sodium hydroxide solution of concentration $0.15 \mathrm{~mol} / \mathrm{dm}^{3}$.

The equation which represents the reaction is:
$\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
Calculate the concentration of hydrochloric acid in mol$/ \mathrm{dm}^{3}$
Convert $19.4 \mathrm{~cm}^{3}$ in $\mathrm{dm}^{3}=19.4 / 1000=0.0194 \mathrm{dm}^{3}$
Moles $=0.15 \times 0.0194=0.00291$
Concentration $=0.00291 / 0.02=0.146 \mathrm{~mol} . / \mathrm{dm}^{3}$

Task 3 answers

$15.8 \mathrm{~cm}^{3}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ completely neutralised $20 \mathrm{~cm}^{3}$ of NaOH . The NaOH was $1.5 \mathrm{~mol} / \mathrm{dm}^{3}$. The equation is: $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$

Calculate the concentration of the of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Convert $20 \mathrm{~cm}^{3}$ to $\mathrm{dm}^{3}=20 / 1000=0.02 \mathrm{dm}^{3}$
Moles $\mathbf{N a O H}=\mathbf{1 . 5} \mathbf{x} \mathbf{0 . 0 2} \mathbf{= 0 . 0 3} \quad$ Ratio $\mathrm{NaOH}: \mathrm{H}_{2} \mathrm{SO}_{4}=\quad 2: 1$

$$
\text { Moles } \mathrm{NaOH}: \mathrm{H}_{2} \mathrm{SO}_{4}=0.03: 0.015
$$

Concentration $\mathrm{H}_{2} \mathrm{SO}_{4}=0.015 / 0.0158=0.95 \mathrm{~mol} / \mathrm{dm}^{3}$

Question 1 answers

- Choose titrations 3, 4, 5
- Average volume of $\mathrm{NaOH}=20.13\left(\mathrm{~cm}^{3}\right)$
- (calculation):
$($ moles $\mathrm{NaOH}=(20.13 / 1000) \times 0.205$

$$
=0.0041
$$

- (moles $\mathrm{H}_{2} \mathrm{SO}_{4}=$
$1 / 2 \times 0.0041=) 0.00206$
- $($ concentration $=0.00206 /(20 / 1000)$
$=\underline{0.103 ~ \mathrm{~mol} / \mathrm{dm}^{3}}$

