Triple - Chemistry - Key Stage 4

Quantitative Chemistry

Titration calculations

Mrs. Begum

Periodic Table of Elements

				Key:													
1 H hydrogen 1		rel	ative atomi	c mass – Name –	→ 1 H ← hydrogen 1 ←	Atomic Atomic	symbol (proton ni	umber)									He
7 Li lithium 3	9 Be beryllium 4											B boron 5	C carbon	N nitrogen	16 O oxygen 8	19 F fluorine 9	Ne
Na sodium	Mg magnesium											Al aluminium 13	Si silicon	P phosphorus	32 S sulfur 16	35.5 Cl chlorine	Ar Ar argon 18
39 K potassium 19	Ca calcium 20	SC scandium 21	48 Ti titanium 22	Vanadium 23	Cr chromium	Mn manganese 25	Fe iron 26	Co cobalt 27	59 Ni nickel 28	63.5 Cu copper 29	Zn zinc 30	70 Ga gallium 31	73 Ge germanium 32	75 As arsenic 33	79 Se selenium 34	Br bromine 35	Kr krypton 36
Rb rubidium	Sr strontium	89 Y yttrium 39	91 Zr zirconium 40	Nb niobium	96 Mo molybdenum 42	[97] TC technetium 43	Ru ruthenium	Rh rhodium	Pd palladium	Ag silver	Cd cadmium	115 In indium 49	Sn	Sb antimony	Te	127 iodine 53	Xe xenon 54
133 Cs caesium 55	137 Ba barium 56	La*	178 Hf hafnium 72	181 Ta tantalum	184 W tungsten	186 Re	190 Os osmium 76	192	195 Pt platinum 78	197 Au gold 79	201 Hg mercury 80	204 TI thallium 81	207 Pb	209 Bi bismuth 83	[209] Po polonium 84	[210] At astatine 85	[222] Rn radon 86
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[267] Rf rutherfordium 104	[270] Db dubnium 105	[269] Sg seaborgium 106	[270] Bh bohrium 107	[270] Hs hassium 108	[278] M† meitnerium 109	[281] DS darmstadtium	[281] Rg roentgenium 87	[285]	[286] Nh nihonium 113	[289] FI flerovium 114	[289] MC moscovium 115	[293] LV livermorium 116	[293] TS tennessine	[294] Og organesson 118

^{*} The lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omitted.

Relative atomic masses for Cu and Cl have not been rounded to the nearest whole number.

Warm up

- What do we mean by 'concentration'?
- What are the units for concentration?
- How many cm³ in 1 dm³?
- If a solution has a concentration of 1.5 mol/dm³, how many moles are in 22 cm³?
- What is the concentration of a solution that has 0.02 moles in 20 cm³?

Task 1

Calculate the mean and the uncertainty in these two sets of values:

Attempt	Volume of acid added (cm ³)
1	12.5
2	12.4
3	12.7
4	12.5
5	12.8

Attempt	Volume of acid added (cm ³)
1	23.7
2	23.5
3	23.7
4	23.8
5	23.2

Task 2

1. 15.7 cm³ of HCl completely neutralised 25 cm³ of LiOH. The HCl was 2 mol/dm³.

The equation is: LiOH + HCl \longrightarrow LiCl + H₂O

Calculate the concentration of the LiOH.

2. In a titration, 25.00 cm³ of a solution of hydrochloric acid reacted with 18.40 cm³ of sodium hydroxide solution of concentration 0.15 mol/dm³.

The equation which represents the reaction is:

Calculate the concentration of hydrochloric acid in mol/dm³

Task 3

15.8 cm 3 of H $_2$ SO $_4$ completely neutralised 20 cm 3 of NaOH. The NaOH was 1.5 mol/dm 3 .

The equation is: $2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O$

Calculate the concentration of the of H₂SO₄.

Question 1

A student titrated 20 cm³ portions of dilute sulfuric acid with a 0.205 mol/dm³ sodium hydroxide solution.

The table below shows the student's results:

Titration	1	2	3	4	5
Volume of sodium hydroxide solution in cm ³	21.50	19.10	20.10	20.15	20.15

The equation for the reaction is: $2 \text{ NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2 \text{H}_2\text{O}_4$

• Calculate the concentration of the sulfuric acid in mol/dm³.

Use only the student's concordant results.

Concordant results are those within 0.10 cm³ of each other.

Warm up answers

- What do we mean by 'concentration'? The mass of dissolved solute per unit volume
- What are the units for concentration? g/dm³ or mol/dm³
- How many cm³ in 1 dm³? **1000 cm³ in 1 dm³**
- If a solution has a concentration of 1.5 mol/dm³, how many moles are in 22 cm³?
 0.033 moles
- What is the concentration of a solution that has 0.02 moles in 20 cm³? 1 mol/dm³ (1 M)

Task 1 answers

Calculate the mean and the uncertainty in these two sets of values:

Attempt	Volume of acid added (cm ³)
1	12.5
2	12.4
3	12.7
4	12.5
5	12.8

Attempt	Volume of acid added (cm ³)
1	23.7
2	23.5
3	23.7
4	23.8
5	23.2

Mean =
$$(23.7 + 23.7 + 23.8) / 3 = 23.7$$

Uncertainty = $(23.8 - 23.7) / 2 = 0.05$

Task 2 answers

1. 15.7 cm³ of HCl completely neutralised 25 cm³ of LiOH. The HCl was 2 mol/dm³.

The equation is: LiOH + HCl
$$\longrightarrow$$
 LiCl + H₂O

Calculate the concentration of the LiOH.

Convert 14.8cm
3
 in dm 3 = 14.8 / 1000 = 0.0148 dm 3

Moles =
$$2 \times 0.0148 = 0.0296$$

Task 2 answers

2. In a titration, 25.00 cm³ of a solution of hydrochloric acid reacted with 18.40 cm³ of sodium hydroxide solution of concentration 0.15 mol/dm³.

The equation which represents the reaction is:

Calculate the concentration of hydrochloric acid in mol/dm³

Convert 19.4 cm 3 in dm 3 = 19.4 / 1000 = 0.0194 dm 3

Moles = $0.15 \times 0.0194 = 0.00291$

Concentration = $0.00291 / 0.02 = 0.146 \text{ mol./dm}^3$

Task 3 answers

15.8 cm 3 of H $_2$ SO $_4$ completely neutralised 20 cm 3 of NaOH. The NaOH was 1.5 mol/dm 3 .

The equation is: $2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O$

Calculate the concentration of the of H₂SO₄.

Convert 20 cm 3 to dm 3 = 20 / 1000 = 0.02 dm 3

Moles NaOH = 1.5 x 0.02 = 0.03 Ratio NaOH : $H_2SO_4 = 2:1$

Moles NaOH: $H_2SO_4 = 0.03 : 0.015$

Concentration $H_2SO_4 = 0.015 / 0.0158 = 0.95 \text{ mol/dm}^3$

Question 1 answers

- Choose titrations 3, 4, 5
- Average volume of NaOH = $20.13 \text{ (cm}^3\text{)}$
- (calculation): (moles NaOH = (20.13 /1000) x 0.205 = 0.0041
- (moles $H_2SO_4 = \frac{1}{2} \times 0.0041 = 0.00206$
- (concentration = 0.00206/(20/1000))
 - = <u>0.103 mol/dm</u>³

