Mathematics

The Painted Cube problem.

Downloadable resource.

Mr Millar

Try this

A $3 \times 3 \times 3$ cube is put together using smaller white pieces.

The outside is painted red and left to dry.
The large cube is then taken apart piece by piece.
What do the smaller pieces look like?

Connect

Let's think about the number of cubes with 1 or 2 faces painted.

\# Faces painted	Where?	\# Cubes
3	Corners	8
2		
1		
0	"Inside"	1

Independent task

Now let's think about a $4 \times 4 \times 4$ cube.

\# Faces painted	Where?	\# Cubes
3	Corners	
2		
1		
0	"Inside"	

Explore

Now let's think about an $n \times n \times n$ cube.

\# Faces painted	Where?	\# Cubes
3	Corners	
2		
1		
0	"Inside"	

Answers

Try this

A $3 \times 3 \times 3$ cube is put together using smaller white pieces.

The outside is painted red and left to dry.
The large cube is then taken apart piece by piece.
What do the smaller pieces look like?

Connect

Let's think about the number of cubes with 1 or 2 faces painted.

\# Faces painted	Where?	\# Cubes
3	Corners	8
2	Along the edges (not the corners)	12
1	In the middle of the faces	6
0	"Inside"	1

Independent task

Now let's think about a $4 \times 4 \times 4$ cube.

\# Faces painted	Where?	\# Cubes
3	Corners	8
2	Along the edges (not the corners)	24
1	In the middle of the faces	24
0	"Inside"	8

Explore

Now let's think about an $n \times n \times n$ cube.

\# Faces painted	Where?	\# Cubes	On each of the 2 "end" rows, $4 n-8$ faces
3	Corners	8	On the ($n-2$) "middle"
2	Along the edges (not the corners)	12n-24	rows, 4. $2(4 n-8)+4(n-2)=12 n-24$
1	In the middle of the faces		6 faces, $(n-2)^{2}$ in the middle of
0	"Inside"		

Note that these sum to n^{3}

