Mathematics

Operations in different bases

Mr Maseko

Try this

Which base is easiest to round in?

Try this

Subtraction in base 7

$$
\begin{gathered}
10-1=6 \\
10-3=4 \\
100-20=50
\end{gathered}
$$

Why?

$$
100-1
$$

$$
1000-1
$$

$$
1000-11
$$

What connections/patterns do you see?

Try this

$$
100-1
$$

$$
1000-1
$$

```
100-11
```

```
1000-11
```


Try this

Number bonds in Base 3, 4, and 5.

Base 3

+	1	2
1	2	10
2	10	11

Base 4

+	1	2	3
1			
2			
3			

Base 5

+	1	2	3	4
1				
2				
3				
4				

Draw a number bonds table for base 7.

Try this

Use the example of this addition in base 4 to work out the answers to these addition in base 4.

$$
23+31
$$

$33+21$
$1230+3210$

323			
$+\quad 232$			
1221	$203+1331$	$323+$	$31+203+33$

Check you answers by converting back to base 10.
Try the same calculations in base 8. What are the similarities?

The digits of base 12 are:
$\begin{array}{llllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & A & B\end{array}$

Task 1: True or False?

$$
\begin{array}{lll}
7+7=12 & \mathrm{~A}+\mathrm{B}=19 & 1 \mathrm{~A}-\mathrm{B}=\mathrm{B}
\end{array}
$$

Task 2: Working in base 12, calculate:
$536+$ ABA
$B B B+A 87$

100 - A7
$A B B A+B A A B$
$B A B-A B A$

In imperial measures, there are 12 inches in a foot. Before decimal money, there were 12 pennies in a shilling.

Why do you think base 12 was commonly used?

