
Varying the ratio of side lengths in right angle triangles

Dr Rim Saada

Try this

Imagine a rod rotating about a point on a horizontal line.

How does the relationship between a and b change as you vary the angle x?

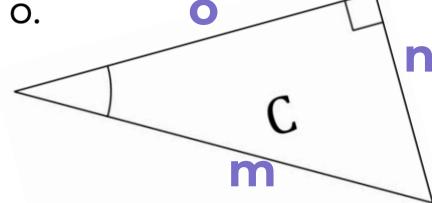
What values of *x* would mean that:

a is longer than *b*?

b longer than *a*?

a and b the same length?

Independent task


Draw 4 right angled triangles such that each triangle has a 30° angle. Name the triangles A, B, C, D.

For each triangle label the hypotenuse with m.

Label the side opposite to the 30° angle with n.

Label the last side with o.

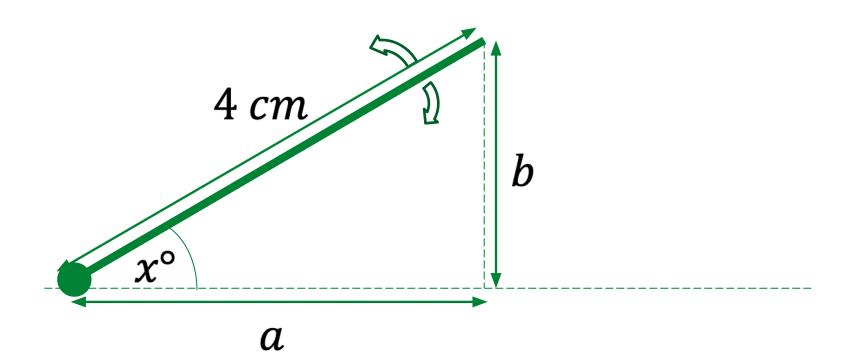
For example:

Measure the sides and complete the table.

Enlarge one of your triangles by scale factor

of 2 and $\frac{1}{3}$. What do you notice?

gle	А	В	С	D
angle				


Explore

Construct a right-angled triangle similar to the one shown below

```
such that x = 30^{\circ}.
```

Construct another 2 triangles where $x = 45^{\circ}$, and 60°.

What do you notice about a, b and 4?

