Varying the ratio of side lengths in right angle triangles

Dr Rim Saada

Try this

Imagine a rod rotating about a point on a horizontal line.

How does the relationship between a and b change as you vary the angle x ?
What values of x would mean that:
a is longer than b ?
b longer than a ?
a and b the same length?

Independent task

Draw 4 right angled triangles such that each triangle has a 30° angle.
Name the triangles A, B, C, D.
For each triangle label the hypotenuse with m.
Label the side opposite to the 30° angle with n. Label the last side with o.

For example:

Measure the sides and complete the table.
Enlarge one of your triangles by scale factor
of 2 and $\frac{1}{3}$. What do you notice?

Triangle	A	B	C	D
Marked angle				
\mathbf{n}				
\mathbf{m}				
\mathbf{o}				

Explore

Construct a right-angled triangle similar to the one shown below such that $x=30^{\circ}$.

Construct another 2 triangles where $x=45^{\circ}$, and 60°.
What do you notice about a, b and 4 ?

