Lesson 11 - Elastic Objects Revision

Physics - KS3

Forces in Action

Mrs Wolstenholme

What are Elastic Objects?

Elastic objects undergo elastic deformation.

When a force is removed they return to their original shape.

Credit: Andy Saville

Why is a spring an elastic object?

Option 1

Option 2

It changes shape permanently.

It breaks.

Option 3

Option 4

It returns to its original shape when the force is removed.

It never changes shape.

What are Elastic Objects?

Explain why dough is not an elastic object?

When a **force** is exerted on the dough, it **changes shape**.

When the force is **removed** it **does not return** to its original shape.

This means it is **not elastic.**

Your Turn: What are Elastic Objects?

Explain why chewing gum is not an elastic object?

When a _____ is exerted on the chewing

gum, it ______ shape.

When the force is removed it ______ return

to _____.

This means it is ______.

The practical

Credit: Andy Saville

 Hang a spring off a clamp and stand and clamp a ruler so the zero line is lined up with the bottom of the spring

2. **Add** 100 g mass on the bottom of the spring

Force (N)	Extension (cm)			
	1	2	3	Mean
0	0			
10	12			
20	24			
30	36			
40	48			

3

3. **Record** the measurement from the base of the spring

The practical

4. Continue to add 100 g masses and record the extension until you reach 800 g

5. **Remove** the masses and repeat twice

Credit: Andy Saville

6. **Plot** a force vs Extension graph

Put the method in the correct order

А	Add 100 g mass on the bottom of the spring
В	Continue to add 100 g masses and record the extension
С	Remove the masses and repeat twice
D	Plot a force vs Extension graph
E	Hang a spring off a clamp and stand and clamp a ruler s zero line is lined up with the bottom of the spring
F	Record the measurement from the base of the spring

Independent Task: Fix this method

- 1. I hung my spring on the clamp stand and clamp the rule so that the zero line is lined up to the top of the spring.
- 2. Add a mass to the bottom of the spring
- 3. Record the measurement on the ruler
- 4. Keep adding masses
- 5. Plot a Force vs extension graph

Practice writing the method independently

Credit: Andy Saville

Force (N)	Extension (cm)			
	1	2	3	Mean
0	0			
10	12			
20	24			
30	36			
40	48			

5

Straight line through the origin

Force and extension are directly proportional

If force **doubles** (x2)

Extension **doubles** (x2)

Independent Task

- 1. How do we know the object is elastic at the beginning?
- 2. In the straight line part, what happens to the extension if the force triples?
- 3. At what force is the limit of proportionality?
- 4. How can you tell?
- 5. What is point B?
- 6. What would happen if I let go of my spring after point B?

The Equation

Force Ξ

(N)

Spring constant Х (N/m)(N/cm) F = k x e

change the length, the larger the spring constant.

Extension

(m)(cm)

Spring constant is the force required to change the length by 1 m.

The larger the force required to

Write this equation in symbols

Force = Spring constant x (N) (N/m) (N/cm)

Extension

(m) (cm)

Write the possible units underneath the words

Force = Spring constant x

F = k x e

Extension

$$F = k x e$$

Steps	Calculating Force Calculate the force
	there is an extensi
	and the spring co
	10 N/m
Check Units	Extension = 20 cm
Substitute into	F=kxe
Equation	F = 10 x 0.2
Rearrange	
Answer	F = 2 N

$$F = k x e$$

Steps	Calculating Force Calculate the sprin a spring if there is of 3 m with a force
Check Units	
Substitute into	F=kxe
Equation	$6 = k \times 3$
Rearrange	6 ÷ 3 = k x 3 ÷ 3
	6 ÷ 3 = k
Answer	k = 2 N/m

$$F = k x e$$

Steps	Calculating Force Calculate the exte
	an object with spr
	40 N/m is pulled w
	400 N.
Check Units	
Substitute into	F=kxe
Equation	400= 40 x e
Rearrange	400 ÷ 40 = 40 x e ·
	400 ÷ 40 = e
Answer	e=10 m

F=kxe Steps	Calculating Force: Calculate the force applied if there is an extension of 20 cm and the spring constant is 10 N/m	Calculating Spring Constant: A stress ball has a force of 4 N applied to it and is compressed by 0.01 m. Calculate the spring constant.	Calculating Extension: A spring has a force of 5.5 N applied to it and a spring constant of 11 N/m. Calculate the extension.
Check Units			
Substitute into Equation			
Rearrange			
Answer			

F = k x e Steps	Calculating Force : Calculate the force applied if there is an extension of 700 cm and the spring constant is 35 N/m	Calculating Spring Constant: A stress ball has a force of 45 N applied to it and is compressed by 0.1 m metres. Calculate the spring constant.	Calculating Extension: A spring has a force of 63 N applied to it and a spring constant of 2 N/m. Calculate the extension.
Check Units			
Substitute into Equation			
Rearrange			
Answer			

Well Done!

