Lesson 11 - Elastic Objects Revision

Physics-KS3

Forces in Action

Mrs Wolstenholme

What are Elastic Objects?

Elastic objects undergo elastic deformation.
When a force is removed they return to their original shape.

Why is a spring an elastic object?

Option 1

It changes shape permanently.

Option 3

It returns to its original shape when the force is removed.

Option 2

It breaks.

Option 4

It never changes shape.

What are Elastic Objects?

Explain why dough is not an elastic object?

When a force is exerted on the dough, it changes shape.

When the force is removed it does not return to its original shape.

This means it is not elastic.

Your Turn: What are Elastic Objects?

Explain why chewing gum is not an elastic object?

When a \qquad is exerted on the chewing
gum, it \qquad shape.

When the force is removed it \qquad return
to \qquad .

This means it is \qquad .

The practical

1. Hang a spring off a clamp and stand and clamp a ruler so the zero line is lined up with the bottom of the spring

2
2. Add 100 g mass on the bottom of the spring

Force (N)	Extension (cm)			
	1	2	3	Mean
0	0			
10	12			
20	24			
30	36			
40	48			

3
3. Record the measurement from the base of the spring

The practical

4. Continue to add 100 g masses and record the extension until you reach 800 g

5. Remove the masses and repeat twice

6. Plot a force vs Extension graph

Put the method in the correct order

Add 100 g mass on the bottom of the spring
B Continue to add $\mathbf{1 0 0} \mathbf{g}$ masses and record the extension until you reach $\mathbf{8 0 0} \mathbf{g}$

Remove the masses and repeat twice
Plot a force vs Extension graph
Hang a spring off a clamp and stand and clamp a ruler so the zero line is lined up with the bottom of the spring

F Record the measurement from the base of the spring

Independent Task: Fix this method

1. I hung my spring on the clamp stand and clamp the rule so that the zero line is lined up to the top of the spring.
2. Add a mass to the bottom of the spring
3. Record the measurement on the ruler
4. Keep adding masses
5. Plot a Force vs extension graph

Practice writing the method independently

1 Credit: Andy Saville

Force (N)	Extension (cm)			
	1	2	3	Mean
	0			
10	12			
20	24			
30	36			
40	48			

3

6

Independent Task

1. How do we know the object is elastic at the beginning?
2. In the straight line part, what happens to the extension if the force triples?
3. At what force is the limit of proportionality?
4. How can you tell?
5. What is point B ?
6. What would happen if I let go of my spring after point B?

The Equation

Write this equation in symbols

Force $=$ Spring constant x Extension
(N)
(N / m)
(N / cm)
(m)
(cm)

Write the possible units underneath the words

Force $=\quad$ Spring constant x Extension

$$
F=k \times e
$$

$F=k \times e$

Steps	Calculating Force Example: Calculate the force applied if there is an extension of 20 cm and the spring constant is
Check Units	Extension $=20 \mathrm{~cm} \div 100=0.2 \mathrm{~m}$
Substitute into Equation	$\mathrm{F}=\mathrm{k} \times \mathrm{e}$ $\mathrm{F}=10 \times 0.2$
Rearrange	$\mathrm{F}=2 \mathrm{~N}$
Answer	

F K K X \quad\begin{tabular}{|l|l|}

\hline Steps \& | Calculating Force Example: |
| :--- |
| Calculate the spring constant of |
| a spring if there is an extension |
| s 5 m with a force of 6 N |

\hline Check Units \&

\hline	Substitute into
Equation	\&
:---	
$6=\mathrm{k} \times 3$	

\hline Rearrange \& | $6 \div 3=\mathrm{k} \times 3 \div 3$ |
| :--- |
| $6 \div 3=\mathrm{k}$ |

\hline \& Answer

\& $\mathrm{k}=2 \mathrm{~N} / \mathrm{m}$

\hline
\end{tabular}

$F=k \times e$	Steps	Calculating Force Example: Calculate the extension when an object with spring constant $40 \mathrm{~N} / \mathrm{m}$ is pulled with a force of 400 N .
	Check Units	
	Substitute into Equation	$\begin{aligned} & F=k \times e \\ & 400=40 \times e \end{aligned}$
	Rearrange	$\begin{aligned} & 400 \div 40=40 \times e \div 40 \\ & 400 \div 40=e \end{aligned}$
	Answer	$\mathrm{e}=10 \mathrm{~m}$

$F=k \times e$	Calculating Force: Calculate the force applied if there is an extension of 20 cm and the spring constant is 10 $\mathrm{~N} / \mathrm{m}$	Calculating Spring Constant: S stress ball has a force of 4 N applied to it and is compressed by 0.01 m. Calculate the spring constant.	Calculating Extension: A spring has a force of 5.5 N applied to it and a spring constant of $17 \mathrm{~N} / \mathrm{m}$. Calculate the extension.
Check Units			
Substitute into Equation			
Rearrange			
Answer			

$F=k \times e$	Calculating Force: Calculate the force applied if there is an extension of 700 cm and the spring constant is $35 \mathrm{~N} / \mathrm{m}$	Calculating Spring Constant: A stress ball has a force of 45 N applied to it and is compressed by 0.1 m metres. Calculate the spring constant.	Calculating Extension: A spring has a force of 63 N applied to it and a spring constant of 2 N / m. Calculate the extension.
Check Units			
Substitute into Equation			
Rearrange			
Answer			

Well Done!

