Mathematics

Sketching quadratic graphs I

Mr Coward

Try this

1) Solve:
a) $x^{2}-4 x+3=0$
b) $x^{2}-6 x+9=0$
2) Which graphs shows
$y=x^{2}-4 x+3$ and $y=x^{2}-6 x+9$
Explain how you know. Can you find three reasons?

Independent task

1) Complete the table

Equation	Shape	Roots
1. $y=x^{2}+9 x+20$		Y-intercept
2. $y=x^{2}+7 x+10$		
3. $y=x^{2}-6 x-27$		
4. $y=x^{2}-12 x+27$		
5. $y=x^{2}-12 x+36$		
6. $y=-x^{2}+11 x-10$		
7. $y=-x^{2}-15 x-50$		
8. $y=-x^{2}-2 x+24$		

Explore

A graph has a line of symmetry which helps find its turning points.

What do you notice about the x coordinate of the turning point and the roots?

Can you use this relationship to find the x coordinate of turning points of:
a) $y=x^{2}-6 x+8$
b) $y=x^{2}+6 x+8$
c) $y=x^{2}-9 x+20$
d) $y=x^{2}+3 x-10$

How could you now find the y coordinate?

