Mathematics

Sketching quadratic graphs I

Mr Coward

Try this

- 1) Solve:
- a) $x^2 4x + 3 = 0$
- b) $x^2 6x + 9 = 0$
- 2) Which graphs shows $y = x^2 4x + 3$ and $y = x^2 6x + 9$

Explain how you know. Can you find three reasons?

Independent task

1) Complete the table

Equation	Shape	Roots	Y-intercept
$1.y = x^2 + 9x + 20$			
$2. y = x^2 + 7x + 10$			
$3. y = x^2 - 6x - 27$			
$4. y = x^2 - 12x + 27$			
$5.y = x^2 - 12x + 36$			
$6. y = -x^2 + 11x - 10$			
$7. y = -x^2 - 15x - 50$			
$8. y = -x^2 - 2x + 24$			

Explore

A graph has a line of symmetry which helps find its turning points.

What do you notice about the x coordinate of the turning point and the roots?

Can you use this relationship to find the x coordinate of turning points of:

a)
$$y = x^2 - 6x + 8$$

b)
$$y = x^2 + 6x + 8$$

c)
$$y = x^2 - 9x + 20$$

d)
$$y = x^2 + 3x - 10$$

How could you now find the y coordinate?

