Physics - Key Stage 3 - Energy

Lesson 16: End of Topic Review

Mrs Evans

Independent practice: calculate...

1. ...energy for a 20 W bulb that is on for 10s

2. ...time for a 5 W bulb that transfers 200 J of energy

3. ...power for a bulb that transfers 500 J every 50 s

4. ...energy for a 0.2 kW bulb that is on for 2 mins

For an extra challenge, convert your final answers into different units, such as J into kJ

Values **E**quation **S**ubstitute Rearrange Answer Units

Support -fill in the gaps 1. ...energy for a 20 W bulb that is on for 10s energy = power x time, energy = ___ W x ___ s, energy = ___ J 2. ...time for a 5 W bulb that transfers 200 J of energy time = energy ÷ power, time = ___ J ÷ ___ W, time = ___ s 3. ...power for a bulb that transfers 500 J every 50 s power = energy ÷ time, power = ___ J ÷ ___ s, power = ___ W 4. ...energy for a 0.2 kW bulb that is on for 2 mins energy = power x time, energy = ___ W x ___ s, energy = ___ J

Independent practice: change the incorrect words to make the method correct

- 1. Clamp a test tube securely
- 2. Measure 10 ml of tap water using a measuring cube
- 3. Pour the water into the boiling tube
- 4. Record the final temperature of the water using a ruler
- 5. Measure 4 g of nut 1 using a balance
- 6. Secure spike 6 cm below boiling tube using a thermometer
- 7. Spike nut onto pin carefully
- 8. Set water a light using a match
- 9. Watch the nut while it burns
- 10. Record the final temperature of the nut using a thermometer
- 11. Repeat steps 1 10 for nut 2 and 3

Support the bold words are incorrect and need to be changed

- 1. Clamp a **test** tube securely
- 2. Measure 10 ml of tap water using a measuring **cube**
- 3. Pour the water into the boiling tube
- 4. Record the **final** temperature of the water using a **ruler**
- 5. Measure 4 g of nut 1 using a balance
- 6. Secure spike 6 cm below boiling tube using a **thermometer**
- 7. Spike nut onto pin carefully
- 8. Set water a light using a match
- 9. Watch the nut while it burns
- 10. Record the final temperature of the **nut** using a thermometer
- 11. Repeat steps 1 10 for nut 2 and 3

Analysing our results: calculating a mean

Food	Temperature of water (°C)							
type	Start	Final	Change					
Macadamia nut	20	62						
Cashew nut	20	51						
Pecan nut	20	59						

To find the change in temperature: final temp - start temp

Independent practice: write a conclusion

The nut that contained the most energy was...

I know this because...

Support use this scaffold to help structure your conclusion

The nut that contained the most energy was _____?____.

I know this because the water had the _____? ____ temperature rise after the nut had fully burnt, which means the nut transferred the _____?____ energy to the water.

This nut had temperature rise of _____, whereas the _____? had a temperature rise of _____? ____ and the _____? ____ had a temperature rise of _____?____.

Independent practice: change the incorrect words to make the statement correct

- 1. The fossil fuels are nuclear, (crude) oil and (natural) gas
- 2. The control variable is the thing you change
- 3. Time = power \div energy
- 4. The only unit for time is seconds
- 5. The hydroelectricity and tidal are examples of wind renewable energy resources

Support the bold words are incorrect and need to be changed

- 1. The fossil fuels are **nuclear**, (crude) oil and (natural) gas
- 2. The **control** variable is the thing you **change**
- 3. Time = power ÷ energy
- 4. The **only unit** for time **is** seconds
- 5. The hydroelectricity and tidal are examples of **wind** renewable energy resources

> choose 🙂 if an advantage, choose 🙁 if a disadvantage

> write a Y in the box if the statement is true for the resource

∵ / ∵ ?	Description	Solar	Water	Wind	Geo thermal	Bio mass	Coal	Gas	Oil	Nuclear
:	not finite	Υ	Y	Y	Y	Υ				
	finite									
	affected by weather									
	reliable									

dvantage [.] the resource

:: / :: ?	Description	Solar	Water	Wind	Geo thermal	Bio mass	Coal	Gas	Oil	Nuclear
	renewable									
	non- renewable									
	releases carbon dioxide									
	does not release carbon dioxide									

:: / :: / ?	Description	Solar	Water	Wind	Geo thermal	Bio mass	Coal	Gas	Oil	Nuclear
	ready - made fuel									
	relatively cheap to obtain									
	can use to directly heat water									
	may leak radioactive material									

:: / :: ?	Description	Solar	Water	Wind	Geo thermal	Bio mass	Coal	Gas	Oil	Nuclear
	only									
	suitable in									
	certain									
	locations									
	needs new									
	specialist									
	equipment									
	ruins the									
	look of the									
	sea									
	damage the									
	habitats of									
	birds or fish									

Independent practice: write letter to the prime minister

Tell him about...

>the advantages of using renewable energy resources

>the disadvantages of using non-renewable energy resources

