Prove an Expression Will Be a Multiple of a Given Number

Miss Davies

Please note some slides do have colour images on them

Prove an expression will be a multiple of a number

1. Prove for all positive integer values of n
a) $(n+5)^{2}-(n+3)^{2}$ is always a multiple of 4
b) $(n+9)^{2}-(n-2)^{2}$ is always a multiple of 11
2. Prove for all positive integer values of n
a) $(3 n+2)^{2}-(n-2)^{2}$ is always a multiple of 8
b) $(2 n+5)^{2}-(2 n+4)^{2}+3$ is always a multiple of 4

Prove an expression will be a multiple of a number

3. Prove that the difference between
the squares of any two terms in the
sequence is always a multiple of 64

$$
20,28,36,44,52 \ldots
$$

Prove an expression will be a multiple of a number

4. Take a 3 digit number.

Reverse the digits to form a second 3 digit number.
Prove that the difference between the two 3 digit numbers is a multiple of 9

Answers

Prove an expression will be a multiple of a number

1. Prove for all positive integer values of n
a) $(n+5)^{2}-(n+3)^{2}$ is always a multiple of 4

$$
\begin{aligned}
(n+5)^{2}-(n+3)^{2} & =4 n+16 \\
& =4(n+4)
\end{aligned}
$$

b) $(n+9)^{2}-(n-2)^{2}$ is always a multiple of 11

$$
\begin{aligned}
(n+9)^{2}-(n-2)^{2} & =22 n+77 \\
& =11(2 n+7)
\end{aligned}
$$

2. Prove for all positive integer values of n
a) $(3 n+2)^{2}-(n-2)^{2}$ is always a multiple of 8

$$
\begin{aligned}
(3 n+2)^{2}-(n-2)^{2} & =8 n^{2}+16 n \\
& =8\left(n^{2}+2 n\right)
\end{aligned}
$$

b) $(2 n+5)^{2}-(2 n+4)^{2}+3$ is always a multiple of 4

$$
\begin{aligned}
(2 n+5)^{2}-(2 n+4)^{2}+3 & =4 n+12 \\
& =4(n+3)
\end{aligned}
$$

Prove an expression will be a multiple of a number

3. Prove that the difference between
the squares of any two terms in the
sequence is always a multiple of 64

$$
\begin{gathered}
20,28,36,44,52 \ldots \\
\mathrm{n}^{\text {th }} \text { term }=8 n+12
\end{gathered}
$$

$$
\begin{aligned}
(8 n+12)^{2}-(8 p+12)^{2} & =64 n^{2}+192 n-64 p^{2}-192 p \\
& =64\left(n^{2}+3 n-p^{2}-3 p\right)
\end{aligned}
$$

Prove an expression will be a multiple of a number

4. Take a 3 digit number.

Reverse the digits to form a second 3 digit number.
Prove that the difference between the two 3 digit numbers is a multiple of 9

$$
\begin{aligned}
& \quad \begin{array}{l}
x y z \\
z y x \\
100 x+10 y+z-(100 z+10 y+x) \\
= \\
=99 x+10 y+z-100 z-10 y-x \\
=99 x-99 z=9(11 x-11 z)
\end{array}
\end{aligned}
$$

