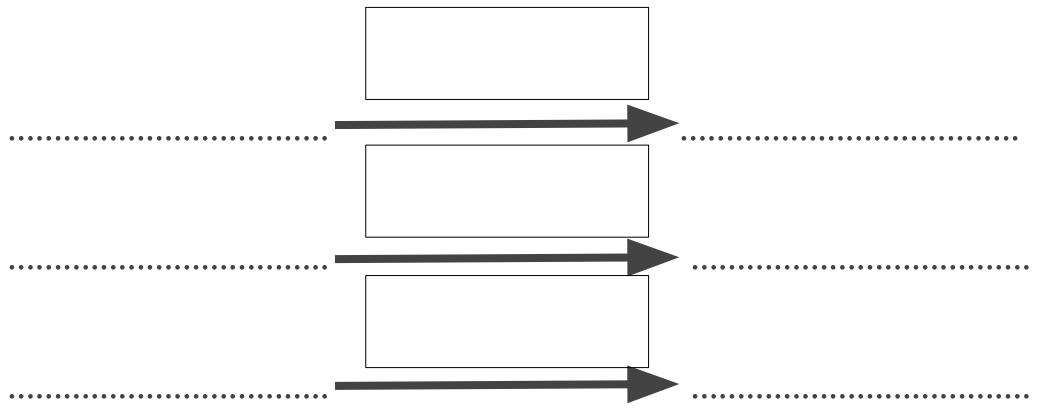
Digestion and Nutrition Lesson 10 - Enzymes

Biology - Key Stage 3


Mrs Walsh

Enzymes

Enzymes

•••••	are broken	down ir	nto	by	
•••••	are broken	down ir	nto	by	
•••••	are broken	down ir	nto	and b	Ŋ

Modelling Digestion

Ask for permission before using any materials from home.

Carry out with adult supervision.

Modelling chemical digestion and absorption in the small intestine

Labelled diagram	Predictions I predict that there will be a test for sugar in the water surrounding the visking tubing because
	I predict that there will be a test for starch in the water surrounding the visking tubing because
	•••••••••••••••••••••••••••••

Modelling chemical digestion and absorption in the small intestine - conclusion

Write a conclusion for the results.

- Did you find starch in the water outside the tube? Explain why.
- Did you find sugar in the water outside the tube? Explain why.

Word bank:

starch, amylase, sugar, diffuse, semi-permeable, solution, large, small

•••••	•••••••••	•••••••	•••••••
••••••	••••••••	••••••	
••••••	••••••••	••••••	
••••••	••••••••	••••••	
••••••	••••••••	•••••••	••••••••
••••••	••••••••	•••••••	•••••••
•••••	••••••••	•••••••	•••••••
•••••	••••••••	•••••••	•••••••
•••••	••••••	••••••	•••••••
•••••	••••••	••••••	••••••

Evaluating models of digestion

Evaluating Models

How is the model similar to the absorption in the intestines? e.g. sugar diffuses across the membrane into the water

How is the model different to the				
absorption in the intestines?				
e.g. bloodstream constantly moving				

Digestion Questions

1.	What causes the stomach to have a pH 1-2?
2.	What is 'mechanical digestion'?
3.	Where is bile made?
4.	Where is water absorbed from digested food?
5.	Name two ways the small intestine is adapted for its function
6.	What does 'semi-permeable' mean?

