Measuring the speed of waves in solids Worksheet

Q1.

Describe an experiment that could be performed to measure the speed of a wave on a string using a vibration generator.

You should include:

- The variables you will measure
- How you will measure these variables
- How you will improve accuracy
- How you will improve reliability
- An equation

Answers

Q1.

Check your answers for the following points:

- Change the frequency and record the frequency from the vibration generator.
- Measure the length of 3 or more waves using a ruler to increase accuracy.
- Divide the length of the waves, by the number of waves to obtain the average wavelength.
- Repeat the length measurement to improve reliability.
- Calculate the wavelength using wave speed $=$ frequency \times wavelength.

In lesson questions

Independent Task: Measuring the speed of waves on a string.

1. Write down the purpose of the vibration generator.
2. Copy and complete the table below

Method

Reason

Measure the length of multiple waves using a ruler.
Divide the length by the number of waves.

Independent Task - Copy and complete the table of data

Frequency (Hz)	Length of 3 waves (cm)				Wavelength (cm)	Wave speed (cm/s)
	1	2	3	average		
1.50	7.5	7.4	7.5	7.5	2.5	3.8
1.80	6.2	6.2	6.3			
2.10	5.4	5.5	5.3			
2.40	4.6	5.6	4.6			
2.70	4.2	4.1	4.7			

The speed of waves on a string

Complete the sentences:
As the frequency increases the wavelength
This is because the wave speed is

Worked Example - Examination question

P waves and S waves are different.
P waves are longitudinal and S waves are transverse. Look at the diagram of a model of a wave made with a slinky spring.

The wave is made by moving the spring up and down with a frequency of 1.2 Hz .
Look at the diagram.
i. Calculate the speed of the wave.

Answer \qquad m / s [2]

Answers as discussed in the next slide have not been seen or verified by OCR. OCR, Gateway Physics A, Paper B751/02, June 2015

Worked Example - Examination question

P waves and S waves are different.
P waves are longitudinal and S waves are transverse. Look at the diagram of a model of a wave made with a slinky spring.

The wave is made by moving the spring up and down with a frequency of 1.2 Hz .
ii. What is the amplitude of the wave?

Choose from

$0.11 \mathrm{~m} \quad 0.22 \mathrm{~m} \quad 0.80 \mathrm{~m} \quad 1.60 \mathrm{~m} \quad 1.82 \mathrm{~m}$ [1]
Answers as discussed in the next slide have not been seen or verified by OCR. OCR, Gateway Physics A, Paper B751/02, June 2015

Independent Task - Examination question

In the classroom a teacher demonstrates waves using a rope.
Look at the diagram of the wave.
i. The frequency of the wave is 2 Hz .

What does this statement mean?
[2]

ii. How many seconds will it take this wave to travel 12 m ? Show your working.

Answers as discussed in the next slide have not been seen or verified by OCR. OCR, Gateway Physics A, Paper J249/04, Specimen

Answers

Independent Task: Measuring the speed of waves on a string.

1. Write down the purpose of the vibration generator.

The vibration generator produces the transverse waves on the string.
2. Copy and complete the table below

Method

Measure the length of multiple waves using a ruler.
Divide the length by the number of waves.

Reason

This improves the accuracy our length measurement

This allows us to calculate the mean wavelength.

Review - Independent Task - Copy and complete the table of data

Frequency (Hz)	Length of 3 waves (cm)				Wavelength (cm)	Wave speed (cm/s)
	1	2	3	average		
1.50	7.5	7.4	7.5	7.5	2.5	3.8
1.80	6.2	6.2	6.3	6.2	2.1	3.8
2.10	5.4	5.5	5.3	5.5	1.8	3.8
2.40	4.6	5.6	4.6	4.6	1.5	3.6
2.70	4.2	4.1	4.1	4.1	1.4	3.8

Review - The speed of waves on a string

As the frequency increases the wavelength decreases.
This is because the wave speed is constant.

Review: Independent Task - Examination question

In the classroom a teacher demonstrates waves using a rope.
Look at the diagram of the wave.
i. The frequency of the wave is 2 Hz .

What does this statement mean?
Two waves pass the same point [1] each second [1]

ii. How many seconds will it take this wave to travel 12 m ?

Show your working.
Use of velocity $=$ frequency \times wavelength
$V=2 \times 2=4 \mathrm{~m} / \mathrm{s}$
Then, 12 / $4=3$ seconds
Answers as discussed in the next slide have not been seen or verified by OCR. OCR, Gateway Physics A, Paper J249/04, Specimen

