Combined Science - Physics - Key Stage 4 - Electricity

## Electrical Power - part 1 Worksheet

Miss Walrond

## Q1.

Look at the table about electrical heaters.

| Appliance | Voltage in volts | Current in <br> amps | Power rating |
| :--- | :---: | :---: | :---: |
| Water heater | 230 | 15 |  |
| Room heater | 230 | 8 |  |
| Fish tank heater | 10 | 20 |  |

Which heater has the highest power rating?
Use calculations to find out the answer and complete the sentences below.
The appliance with the highest power rating is $\qquad$ .. .
The highest power rating is $\qquad$
The unit for power is
OCR, Gateway Physics A, Paper B751/01, June 2014.

Answers

## Q1. Answers

1. (highest power) water heater. ..... 1
3450 ..... 2
W or Watt ..... 1

If 3450 answer incorrect allow 1 mark for $230 \times 15$ or any other correctly worked out power in the table.

## In lesson questions

## $\mathbf{P}=\mathrm{IV}$

Write out the equation $P=I V$.
Define each symbol and write the units of measure for each variable.

## Worked example - Calculating electrical power

|  | A current of 4 A flows through a <br> heater operating at 230 V. <br> Calculate the power of the heater. | A current of 60 mA flows through a <br> lamp operating at 50 V. Calculate the <br> power of the lamp. |
| :--- | :--- | :--- |
| Values |  |  |
| Equation |  |  |
| Substitute |  |  |
| Rearrange |  |  |
| Answer |  |  |
| Units |  |  |

## Independent Task- Calculating electrical power

1. A current of 10 A flows through a 6 V torch, what is the power rating of the torch?
2. A 9 V battery produces a current of 5.5 A . How much power is transferred?
3. A motor has a potential difference of 12 kV across it and a current of 1.2 A . Calculate the power of the motor.
4. An LED has a current of 8 mA through it and a potential difference of 2 V across it. What is the power rating of the LED?

## Worked example - Using P=IV

|  | A 60 W bulb requires a current of <br> 3 A to make it work. Calculate the <br> potential difference across the <br> bulb. | A 100 W bulb has a potential difference <br> of 12 V across it. What current flows <br> through the lamp? |
| :--- | :--- | :--- |
| Values |  |  |
| Equation |  |  |
| Substitute |  |  |
| Rearrange |  |  |
| Answer |  |  |
| Units |  |  |

## Independent Task - Using P=IV

1. A 45 W torch requires a potential difference of 9 V to make it work. Calculate the current flowing through the torch.
2. A TV has a power rating of 130 W and operates at 230 V . What current flows through it?
3. A microwave has a power rating of 800 W and operates at 230 V . Calculate the current flowing through the microwave. Give your answer to 2 significant figures
4. A loudspeaker has a current of 19 mA flowing through it and it has a power rating of 40W. What potential difference is across the loudspeaker?
$P=I^{\mathbf{2}} \mathrm{R}$

Write out the equation $P=I^{2} R$.
Define each symbol and write the units of measure for each variable.

## Worked example - Calculating electrical power 2

|  | A drill has a current of 12 A flowing <br> through it and a resistance of $9 \Omega$. <br> Calculate the power of the drill. | A laptop has a current of 250 mA flowing <br> through it and a resistance of $200 \Omega$. <br> Calculate the power of the laptop. |
| :--- | :--- | :--- |
| Values |  |  |
| Equation |  |  |
| Substitute |  |  |
| Rearrange |  |  |
| Answer |  |  |
| Units |  |  |

## Independent Task - Calculating Electrical <br> Power 2

1. A washing machine has a current of 12 A flowing through it and a resistance of $3 \Omega$. Calculate the power of the washing machine.
2. A refrigerator has a current of 12 A flowing through it and a resistance of $14 \Omega$.

Calculate the power rating of the refrigerator to 2 sf .
3. A calculator has a current of $133 \mu \mathrm{~A}$ flowing through it and a resistance of $11,300 \Omega$. Calculate the power of the calculator.
4. A gaming console has a current of 0.37 A flowing through it and a resistance of 620 $\Omega$. Calculate the power of the gaming console.

## Worked example - Using $\mathbf{P}=\mathbf{I}^{\mathbf{2}} \mathbf{R}$

|  | A laptop charger has a resistance <br> of $5 \Omega$ and a power of 65 W. <br> Calculate the current flowing <br> through the charger. Give your <br> answer to 3 significant figures. | A camera has a power rating of 2.45 W <br> and a resistance of $5.3 \Omega$. Calculate the <br> current flowing through the camera. <br> Give your answer to 2 significant figures. |
| :--- | :--- | :--- |
| Values |  |  |
| Equation |  |  |
| Substitute |  |  |
| Rearrange |  |  |
| Answer |  |  |
| 14 |  |  |

## Independent Task - Using $\mathbf{P}=\mathbf{I}^{\mathbf{2}} \mathbf{R}$

1. A dishwasher has a power rating of 950 W and has a resistance of $45 \Omega$. Calculate the current flowing through the dishwasher.
2. A camera has a power rating of 2.45 W and a resistance of $5.3 \Omega$. Calculate the current flowing through the camera. Give your answer to 2 significant figures.
3. A printer has a power rating of 10 W and has a resistance of $48 \Omega$. Calculate the current flowing through the printer. Give your answer to 2 significant figures.
4. A pair of hair straighteners has a power rating of $1,500 \mathrm{~W}$. A current of 2.1 A flows through the straighteners. What is their resistance?
5. An electric shave has a power rating of 15 W . If the current through the shaver is 50 mA . What is the resistance of the shaver?

Answers

## Review - $\mathbf{P}=\mathrm{IV}$

$P=1 \times V$
Power = current $\times$ potential difference, where $\mathrm{P}=$ power, $\mathrm{I}=$ current and $V=$ potential difference.

Units of measure:
Power - watts, w
Current - amps, A
Potential difference - volts, V

## Review: Independent Task- Calculating electrical power

1. A current of 10 A flows through a 6 V torch, what is the power rating of the torch? 60 W
2. A 9 V battery produces a current of 5.5A. How much power is transferred? 49.5 W
3. A motor has a potential difference of 12 kV across it and a current of 1.2 A . Calculate the power of the motor? $\mathbf{1 4 , 4 0 0} \mathbf{W}$
4. An LED has a current of 8 mA through it and a potential difference of 2 V across it. What is the power rating of the LED? $0.016 \mathbf{W}$

## Review: Independent Task - Using P=IV

1. A 45 W torch requires a potential difference of 9 V to make it work. Calculate the current flowing through the torch. 5 A
2. A TV has a power rating of 130 W and operates at 230 V . What current flows through it? 0.57 A
3. A microwave has a power rating of 800 W and operates at 230 V . Calculate the current flowing through the microwave. Give your answer to 2 significant figures 3.5 A
4. A loudspeaker has a current of 19 mA flowing through it and it has a power rating of 4 W . What potential difference is across the loudspeaker? $\mathbf{2 1 0} \mathbf{~ V}$

## Review: $P=I^{2} R$

$P=I^{2} \times R$
Power $=(\text { current })^{2} \times$ Resistance

Units of measure:
Power - watts, W
Current - amps, A
Resistance - ohms, $\boldsymbol{\Omega}$

## Review: Independent Task - Calculating Electrical Power 2

1. A washing machine has a current of 12 A flowing through it and a resistance of $3 \Omega$. Calculate the power of the washing machine. 432 W
2. A refrigerator has a current of 12 A flowing through it and a resistance of $14 \Omega$.

Calculate the power rating of the refrigerator to 2 sf .2000 W
3. A calculator has a current of $133 \mu \mathrm{~A}$ flowing through it and a resistance of $11,300 \Omega$. Calculate the power of the calculator. $\mathbf{0 . 0 0 0 2 0} \mathbf{W}$
4. A gaming console has a current of 0.37 A flowing through it and a resistance of 620 $\Omega$. Calculate the power of the gaming console. $85 \mathbf{W}$

## Independent Task - Using $\mathbf{P}=\mathbf{I}^{\mathbf{2}} \mathbf{R}$

1. A dishwasher has a power rating of 950 W and has a resistance of $45 \Omega$. Calculate the current flowing through the dishwasher. 4.59 A
2. A camera has a power rating of 2.45 W and a resistance of $5.3 \Omega$. Calculate the current flowing through the camera. Give your answer to 2 significant figures. 0.68 A
3. A printer has a power rating of 10 W and has a resistance of $48 \Omega$. Calculate the current flowing through the printer. Give your answer to 2 significant figures. 0.46 A
4. A pair of hair straighteners has a power rating of $1,500 \mathrm{~W}$. A current of 2.1 A flows through the straighteners. What is their resistance? $340 \Omega$
5. An electric shave has a power rating of 15 W . If the current through the shaver is 50 mA . What is the resistance of the shaver? $\mathbf{6 0 0 0} \Omega$
