Mathematics

Base 10 and Base 5

Mr Millar

Try this

In the base 5 number system, we group units in groups of 5 .
How would we represent 23 in the Base 5 system?

23 is \qquad lots of 10 and \qquad lots of 1

23 is \qquad lots of 5 and \qquad lots of 1

Connect

In the Base 5 number system, the third column is twenty-fives.

Base 10

hundreds	tens	ones

hundreds	tens	ones
1	1	3

Base 5

twenty-fives	fives	ones
2	4	1

Independent task

1. Write these Base 5 numbers in their equivalent in Base 10

Note: this means 3 lots of 5 and 2 lots of 1
2. Write these Base 10 numbers in their equivalent in Base 5

Note: this means 16 in our regular number system

Explore

Are the following statements always, sometimes or never true? If sometimes, find an example AND a counter-example

Answers

Try this

In the base 5 number system, we group units in groups of 5 .
How would we represent 23 in the Base 5 system?

23 is 2 lots of 10 and 3 lots of 1

23 is 4 lots of 5 and 3 lots of 1

Connect

In the Base 5 number system, the third column is twenty-fives.

Base 10

hundreds	tens	ones
	7	1

Base 5

hundreds	tens	ones
1	1	3

twenty-fives	fives	ones
2	4	7
$\left.\begin{array}{l}2 \times 25=50 \\ \begin{array}{l}1 \times 5=20 \\ 1 \times 7=7\end{array}\end{array}\right] 71$		

$=$| twenty-fives | fives | ones |
| :---: | :---: | :---: |
| 4 | 2 | 3 |

$$
\begin{aligned}
& 4 \times 25=100 \\
& 2 \times 5=10 \\
& 3 \times 1=13
\end{aligned} \quad 113
$$

Independent task

1. Write these Base 5 numbers in their equivalent in Base 10

2. Write these Base 10 numbers in their equivalent in Base 5

Explore

Are the following statements always, sometimes or never true? If sometimes, find an example AND a counter-example

```
Sometimes, eg 115 < 910
but 415}>>91
```

2-digit base 5 numbers are greater than 1-digit base 10 numbers.

Sometimes, eg $95_{10}>111_{5}$
but $85_{10}<444_{5}$

