Computing

Lesson 3: Binary Digits

Representations- from Clay to Silicon

Sara Alade

Task 1 - Name the symbols

What do we call these symbols?
How many of them are there?

$$
\begin{aligned}
& \text { a b c d e f g h i j } \\
& k \text { l m n o p q r s t } \\
& \text { u v w x y z }
\end{aligned}
$$

Answer:-

Task 2 - Count the text length

cat

Write answers below

1. What is the length of this word? (How many symbols does it contain?)
2. Can you give another example of a - length: 3-letter word?

Task 3 - What are these symbols?

1. What do we call these symbols?
2. How many of them are there?

0123456789

Write answer below:

Task 4 - Count the symbols

314
Answers below:

What is the length of this number?
(How many symbols does it contain?)

Can you give another example of a 3-digit number?

How many 3-digit numbers can there possibly be?
length:

- examples:-

3-digit numbers:

Task 5 - Counting the bits

How many binary digits does it take to represent the message:

See you tonight?

Hint: Spaces are characters too!

Task 6 - Counting the bits (Solution)

A single text message is restricted to contain at most 1120 bits.
What is the maximum number of characters in a single text message?

Hint: How many 7-bit sequences
can fit into 1120 bits?

Task 7: Counting 7-bit sequences

ASCII uses sequences of 7 bits to represent characters.

How many different characters
can be encoded using 7 bits?

Are these maximum possible characters enough to encode letters, digits, and symbols?

Hint: How many 7-bit sequences
are possible?

Answer:

Answer:

Task 8: Counting 8-bit sequences

Many 8-bit coding schemes are based on 7-bit ASCII

Using an additional bit doubles the number of possible characters from 128 (7-bit) to 256 (8-bit).

Why do you think it was necessary to extend the original 7-bit code with an additional binary digit?

