Equivalent fractions

Mathematics

Try this

There are many ways to write fractions that represent the same

value.

$$\frac{1}{2} = \frac{3}{6}$$

$$\frac{1}{3} = \frac{9}{9}$$

Find other sets of fractions with the same value.

Connect

Complete the sets of equivalent fractions

$$\frac{1}{2} = \frac{2}{10}$$

Draw two diagrams to represent fractions equivalent to $\frac{4}{5}$

$$\frac{4}{5} = \begin{bmatrix} \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

Independent task

1. What fraction a a hexagon is shaded?

Independent task

2. a. Find the marked numbers:

2. b. Use the number line to convert i, ii and iii into sixths.

Why couldn't you convert iv, v, and vi into thirds?

Independent task

3. Find the missing numbers:

a)
$$\frac{3}{11} = \frac{3}{44}$$

b)
$$\frac{4}{5} = \frac{12}{5}$$

c)
$$\frac{3}{24}$$

a)
$$\frac{3}{11} = \frac{3}{44}$$
 b) $\frac{4}{5} = \frac{12}{5}$ c) $\frac{3}{5} = \frac{6}{24}$ d) $\frac{10}{7} = \frac{10}{56}$

e)
$$\frac{2}{8} = \frac{2}{28}$$

f)
$$\frac{7}{6} = \frac{21}{6}$$

g)
$$\frac{3}{-} = \frac{5}{25}$$

e)
$$\frac{2}{8} = \frac{1}{28}$$
 f) $\frac{7}{6} = \frac{21}{6}$ g) $\frac{3}{6} = \frac{5}{25}$ h) $\frac{40}{5} = \frac{1}{26}$

Explore

How many different sets of equivalent fractions can you find by placing the digit cards in the frame?

