
Lesson 1: GUIs

Programming Part 5: Strings and Lists

Computing

Ben Garside

 Materials from the Teach Computing Curriculum created by the National Centre for Computing Education11

Task 1 - adding two numbers

2

For this mini project you will be creating
an app that allows you to enter two
numbers and add them together. Your
app will look like the screenshot (note
that Mac users will see a slight variation
to the screenshots presented here)

Task 1 - adding two numbers

3

Step 1

The first step is to set up and test your app using the
code below:

Step 2

Test that the program works successfully.

1
2
3
4
5
6
7
8

import the modules required from guizero
from guizero import App

create the app with the window title “Add two numbers”
app = App(title="Add two numbers")

display the app, this should always be last
app.display()

Task 1 - adding two numbers

4

Step 3

Import all of the widgets that you need .

This program uses the following widgets:

App, Text, TextBox, PushButton

Make sure that all of the widgets have been
imported on the top line of code.

Task 1 - adding two numbers

5

Step 4 - Build the app

Your code for adding the widgets to the app needs
to be placed between the app creation line of code
and the app display line of code. See below:

Step 5

Take a look at the layout on the right for the app
that you are going to build and note the required
widgets.

app = App(title="Add two numbers")

add your widget code here

app.display()

Task 1 - adding two numbers

6

Step 6

You can be really specific about where your widgets
are placed and you can explore these options later. In
this project you will simply be placing one widget
after the other in a sequence.

This sequence goes:

● Text
● TextBox
● Text
● TextBox
● Text
● PushButton

This means that you will need 6 lines of
code to add all of the required widgets
onto the app.

Each widget needs its own unique
identifier, like a variable name.

On the next slide is a table to help you
with the identifiers of each widget.

Task 1 - adding two numbers

7

Step 6 continued

Identifier Widget

instructions Text

enter_num1 TextBox

instructions2 Text

enter_num2 TextBox

display_answer Text

display_number PushButton

Task 1 - adding two numbers

8

Step 7

Below are code snippets for each widget with explanations of how they work. Use these to
help you create the first 5 widgets in your app. The PushButton will be dealt with later.

This code snippet can be used to display text. The identifier should be replaced with your
unique identifier and the Text to display should be replaced with the text that you wish to
display.

Note: the app part of this code instructs that this widget is controlled by the app. You can
use other ‘masters’ here which you could explore later.

identifier = Text(app, text="Text to display")

Task 1 - adding two numbers

9

Step 7 continued

Text box

This code snippet can be used to add a text box. These work a little bit like the input()
functions that you have used before. The identifier should be replaced with your unique
identifier. The rest of the statement should stay the same.

identifier = TextBox(app)

Task 1 - adding two numbers

10

Step 8

Test your app by running it. If it works correctly it should load
like this:

If your app doesn’t look like the one above then double check
that you have written your code in the correct order and that
you have used the correct syntax for each widget.

Task 1 - adding two numbers

11

Step 9 - Adding a push button

Adding the PushButton is slightly different to the other widgets because you want the
PushButton to call a subroutine when the button is pressed. The subroutine will add the two
numbers together and display the answer in display_answer.

The identifier is the unique name for the widget. The subroutine is the subroutine that you wish to
call when the button is pressed. The Button Text is what you want to appear on the button.

When the button is pressed the subroutine add is going to be called. We add the identifier for the
subroutine here but we leave out the () part as including it will automatically call the subroutine
before we want it to.

Create the line of code that will add the PushButton widget.

identifier = PushButton(app, command=subroutine, text="Button Text")

Note: if you try to test your code
at this point then you will get an
error because the add subroutine
has not yet been defined.

Task 1 - adding two numbers

12

Step 10

The add subroutine needs to be defined at the beginning of the code. You should place this
underneath the import statement.

To access and/or modify the value of a TextBox or Text widget you use this code snippet:

Below is all of the code required to create the add subroutine. Your job is to place the lines
of code in the correct order and then add them to your program. Don’t forget the indents!

from guizero import App, Text, TextBox, PushButton

define your subroutine here

identifier.value

display_answer.value = answer
num2 = enter_num2.value
def add():
answer = int(num1) + int(num2)
num1 = enter_num1.value

Task 1 - adding two numbers

13

Step 11

Now test your program. At this point it should be fully functional and should look like the screens
below:

Screen on loading Screen after entering numbers and pressing display

Task 2- The joke machine

14

For this mini project you will be creating
an app that allows the user to select a
joke type and click the button to reveal
the joke. It will look like the screen to the
right.

Task 2- Setting up the app

15

Step 1

This program uses the following widgets:

App, ButtonGroup, Text, PushButton

Make sure that all of the widgets have been imported on the top line of code.

Step 2

Now make sure that you have included the line of code that creates the app and the final
line of code that displays the app.

Tip: Look at your last project if you are unsure of what to do here

Task 2- Build the app

16

Step 3

Take a look at the layout for the app that you are going to build and note the required
widgets and the order in which they appear.

Task 2- Build the app

17

Step 4

Make sure that each widget has its own unique identifier.

Here is a table to help you with the identifiers of each widget.

Identifier Widget

instruction Text

joke_choice ButtonGroup

joke_button PushButton

display_joke Text

Task 2- Build the app

18

Step 5

The new widget that you need to use is the ButtonGroup widget. Here is a code snippet:

This code snippet can be used to create a list of options. The identifier should be replaced
with your unique identifier. “op1”,”op2” are the list items. You can add more as long as you
add a comma and surround the option with speech marks. The selected part is where you
choose which option should initially be selected in the list.

identifier = ButtonGroup(app, options=["op1", "op2"], selected="op1")

Task 2- Create the jokes subroutine

19

Step 6

Make sure that your PushButton calls the jokes subroutine when it is pressed.

Tip: Look at your previous app to remember how to properly set up the PushButton.

Task 2- Create the jokes subroutine

20

Step 7

The jokes subroutine needs to be defined at the
beginning of the code. You should place this
underneath the import statement.

To access the selected option from the ButtonGroup
you need to use:

Below is a code snippet to get you started with the
jokes subroutine.

identifier.value

def jokes():
 if joke_choice.value == "Stick":
 display_joke.value = "What is brown and sticky? A stick!"

Complete the jokes subroutine so that
it covers all the jokes that a user can
select from the ButtonGroup.

● Joke 2: What is pink and fluffy?
Pink fluff!

● Joke 3: Why did the chicken cross
the road? To buy some toilet paper!

● Joke 4: What happens to a frog's
car when it breaks down? It gets
toad away!

Task 2 - Testing

21

Step 8

Now test your program. At this point it should be fully functional and should look like the screens
below:

Screen on loading Screen after pressing “Show Joke”

Task 3 - Procedural vs event driven programming
Sort the statements below into either procedural or event driven programming:

● The flow of the program is determined by user actions, such as button clicks.
● The flow of control is executed in the order it is written.
● It is commonly used when creating graphical user interfaces.
● It is commonly used when the order of execution is known.
● The program waits for a user action before executing a block of statements.

22

Procedural programming Event driven programming

