Lesson 5 - Weight

Physics-KS3

Forces and Motion

Mrs Wolstenholme

Calculating Weight

$$
\begin{array}{ccc}
\text { Weight } & = & \text { mass } \\
(\mathrm{N}) & (\mathrm{kg}) & \text { gravitational field strength } \\
(\mathrm{N} / \mathrm{kg})
\end{array}
$$

$$
W=m \times g
$$

Calculating Weight

Weight	mass	\times
(N)	(kg)	gravitational field strength
$(\mathrm{N} / \mathrm{kg})$		

Calculate the weight of a 59 kg astronaut in a gravitational field with a strength of $9.8 \mathrm{~N} / \mathrm{kg}$.

```
W = m x g
```

W = 59×9.8
$\mathrm{W}=578.2 \mathrm{~N}$

What is the unit of Weight?

Option 1
Newton (N)

Option 3

Kilogram (kg)

Option 2

Newton per kilogram (N/kg)

Option 4

Metres (m)

What is the unit of mass in this equation?

Option 1
Newton (N)

Option 3

Kilogram (kg)

Option 2

Newton per kilogram (N/kg)

Option 4

Grams (g)

What is the unit of gravitational field strength?

Option 1

Newton (N)

Option 3
Kilogram (kg)

Option 2

Newton per kilogram (N/kg)

Option 4

Metres (m)

In the equation $\mathbf{W}=\mathbf{m} \times \mathrm{g}$, what does \mathbf{m} stand for?

Option 1
metre

Option 3
mass

Option 2

mustard

Option 4

milk

In the equation $\mathbf{W}=m \times g$, what does g stand for?

Option 1
Gravitational field strength

Option 3
Green

Option 2

Grass

Option 4

Geography

In the equation $\mathbf{W}=\mathbf{m} \times \mathrm{g}$, what does \mathbf{W} stand for?

Option 1

Width

Option 3

Wasp

Option 2

Water

Option 4

Weight

Complete the task

$$
\mathbf{W}=m \times g
$$

1. What does \mathbf{W} stand for?
2. What is the unit of W ?
3. What does m stand for?
4. What is the unit of m ?
5. What does g stand for?
6. What is the unit of g ?

Calculating Weight: Example

Weight	mass	\times
(N)	(kg)	gravitational field strength
$(\mathrm{N} / \mathrm{kg})$		

Calculate the weight of a 55 kg astronaut in a gravitational field with a strength of $2 \mathrm{~N} / \mathrm{kg}$.
$\mathbf{W}=\mathbf{m} \times \mathbf{g}$
$\mathrm{w}=55 \times 2$
W $=110 \mathrm{~N}$

Calculating Weight: Example

Weight $=$	mass	\times
(N)	(kg)	gravitational field strength
$(\mathrm{N} / \mathrm{kg})$		

Calculate the weight of a 100 g bag of sweets in a gravitational field with a strength of $9.8 \mathrm{~N} / \mathrm{kg}$.
Mass $\mathbf{= 1 0 0} \mathbf{g} \div \mathbf{1 0 0 0}=\mathbf{0 . 1} \mathbf{~ k g}$

$\mathbf{W}=\mathbf{m} \times \mathbf{g}$
W $=0.1 \times 9.8$
$\mathbf{W}=0.98 \mathrm{~N}$

Quick Practice

Change these masses into kg

$$
\mathrm{g} \stackrel{\div 1000}{\square} \mathrm{~kg}
$$

1. 4000 g
2. 300 g
3. 21 g
4. 650 g

Calculating Weight: Your Turn

Weight	mass	\times
(N)	(kg)	$(\mathrm{N} / \mathrm{kg})$

Calculate the weight of a 3 kg object in a gravitational field with a strength of $10 \mathrm{~N} / \mathrm{kg}$.

Calculating Weight: Your Turn

Weight $=\quad$ mass

$(\mathrm{N})$$\quad$| (kg) |
| :---: |

Calculate the weight of a 400 g object in a gravitational field with a strength of $5 \mathrm{~N} / \mathrm{kg}$.

$$
\div 1000
$$

9
kg

Calculating Mass

Weight $=$ mass \times gravitational field strength
(N) (kg) (N / kg)

Calculate the mass of a 525.1 N astronaut in a gravitational field with a strength of $8.9 \mathrm{~N} / \mathrm{kg}$.
$\mathbf{W}=\mathbf{m} \times \mathbf{g}$
$525.1=\mathrm{m} \times 8.9$
$525.1 \div 8.9=\mathrm{m} \times 8.9 \div 8.9$
$525.1 \div 8.9=m$
m $=59 \mathrm{~kg}$

What is the next step?

$$
400=m \times 4
$$

Option 1

$400 \times 4=m \times 4 \times 4$

Option 3

$400 \times 4=m \times 4 \div 4$

Option 2

$400 \div 4=m \times 4 \div 4$

Option 4

PANIC!!

What is the next step?

$$
600=m \times 2
$$

Option 1

Option 2

$$
600 \times 2=m \times 2 \times 2
$$

Option 4

PANIC!!

What is the next step?

$$
450=m \times 10
$$

Option 1

$450 \times 10=m \times 10 \times 10$

Option 3

$450 \div 450=m \times 10 \div 450$

Option 2

$450 \div 10=m \times 10 \div 10$

Option 4

PANIC!!

Calculating Mass: Your Turn

Weight $=$ mass x gravitational field strength
(N)
(kg) (N / kg)

Calculate the mass of a 670 N astronaut in a gravitational field with a strength of $9.8 \mathrm{~N} / \mathrm{kg}$.
$\mathbf{w}=\mathbf{m} \mathbf{x} \mathbf{g}$

Calculating Mass: Your Turn

Weight $=$ mass \times gravitational field strength
(N)
(kg) (N / kg)

Calculate the mass of an object 450 N object in a gravitational field with a strength of $20 \mathrm{~N} / \mathrm{kg}$.
$\mathbf{W}=\mathbf{m} \mathbf{x} \mathbf{g}$

Astronaut Tim Peake has a mass of 58 kg . Calculate his weight on different planets

Planet	$\mathrm{g} \mathrm{(N/kg)}$	Weight (N)
Mercury	3.7	$\mathrm{~W}=\mathrm{m} \times \mathrm{g}=58 \times 3.7=214.6$
Venus	8.9	
Earth	10.0	
Mars	3.7	
Jupiter	23.1	
Saturn	9.0	
Uranus	8.7	
Neptune	11.0	

Weight on Different planets

Different planets have different gravitational field strengths.
This is because they have different \qquad . The larger the mass of the planet, the \qquad the gravitational field strength.

Our weight will be different on different planets because of the different \qquad .

Our \qquad does not change.

$$
\div 1000
$$

Independent Practice

Weight $=$ mass x gravitational field strength
(N)
(N / kg)

1. Calculate the weight of a 5 kg object in a gravitational field with a strength of $9 \mathrm{~N} / \mathrm{kg}$.
2. Calculate the weight of a 2.1 kg object in a gravitational field with a strength of $23.1 \mathrm{~N} / \mathrm{kg}$.
3. Calculate the weight of a 1200 g object in a gravitational field with a strength of $9.0 \mathrm{~N} / \mathrm{kg}$.
4. Calculate the weight of a 90 g object in a gravitational field with a strength of $3.7 \mathrm{~N} / \mathrm{kg}$.
5. Calculate the mass of a 4500 N object in a gravitational field with a strength of $8 \mathrm{~N} / \mathrm{kg}$.
6. Calculate the mass of a 3200 N object in a gravitational field with a strength of $7.6 \mathrm{~N} / \mathrm{kg}$.
