### Lesson 5 - Weight

Physics - KS3

Forces and Motion

Mrs Wolstenholme



### **Calculating Weight**

### Weight = mass x gravitational field strength (N) (kg) (N/kg)

### $W = m \times g$



# **Calculating Weight**

x gravitational field strength Weight = mass (N/kg)(N) (kg)

Calculate the weight of a 59 kg astronaut in a gravitational field with a strength of 9.8 N/kg.

 $W = m \times g$ 

 $W = 59 \times 9.8$ 

W = 578.2 N



# What is the unit of Weight?

### **Option 1**

Newton (N)

**Option 2** 

**Option 3** 

Kilogram (kg)

**Option 4** 

Metres (m)

### Newton per kilogram (N/kg)



# What is the unit of mass in this equation?



Newton (N)



**Option 3** 

Kilogram (kg)

**Option 4** 

Grams (g)

### Newton per kilogram (N/kg)



# What is the unit of gravitational field strength?

**Option 1** 

Newton (N)

**Option 2** 

**Option 3** 

Kilogram (kg)

**Option 4** 

Metres (m)



### Newton per kilogram (N/kg)



### In the equation W = m x g, what does m stand for?

**Option 1** 

metre

**Option 3** 

mass

**Option 4** 

mustard

milk

### **Option 2**

# In the equation W = m x g, what does g stand for?

**Option 1** 

Gravitational field strength



Grass

**Option 3** 

Green

**Option 4** 

Geography



### In the equation W = m x g, what does W stand for?

**Option 1** 

Width

**Option 2** 

Water

**Option 3** 

Wasp

**Option 4** 

Weight



# **Complete the task**

 $W = m \times g$ 

- 1. What does W stand for?
- 2. What is the unit of W?
- 3. What does m stand for?
- 4. What is the unit of m?
- 5. What does g stand for?
- 6. What is the unit of g?



### **Calculating Weight: Example**

Weight mass x gravitational field strength = (N/kg)(N) (kg)

Calculate the weight of a 55 kg astronaut in a gravitational field with a strength of 2N/kg.

 $W = m \times g$ 

 $W = 55 \times 2$ 

W = 110 N



# **Calculating Weight: Example**

Weight mass x gravitational field strength = (N/kg)(N)(kg)

Calculate the weight of a 100 g bag of sweets in a gravitational field with a strength of 9.8 N/kg.

Mass =  $100 \text{ g} \div 1000 = 0.1 \text{ kg}$ 

 $W = m \times g$ 

 $W = 0.1 \times 9.8$ 

### W = 0.98 N



g



### **Quick Practice**

Change these masses into kg

1. 4000 g

2. 300 g

3. 21 g

4. 650 g



g



### **Calculating Weight: Your Turn**

Weight mass x gravitational field strength = (N/kg)(N) (kg)

Calculate the weight of a 3 kg object in a gravitational field with a strength of 10 N / kg.



# **Calculating Weight: Your Turn**

- Weight mass x gravitational field strength = (N/kg)(N) (kg)
- Calculate the weight of a 400 g object in a gravitational field with a strength of 5 N / kg.





### **Calculating Mass**

- Weight mass x gravitational field strength = (N/kg)(N) (kg)
- Calculate the mass of a 525.1 N astronaut in a gravitational field with a strength of 8.9 N/kg.
- $W = m \times g$  $525.1 = m \times 8.9$  $525.1 \div 8.9 = m \times 8.9 \div 8.9$ 525.1 ÷ 8.9 = m
  - m = 59 kg



### What is the next step?

 $400 = m \times 4$ 

**Option 1** 

400 x 4 = m x 4 x4



**Option 3** 

**Option 4** 

 $400 \times 4 = m \times 4 \div 4$ 

PANIC!!

### $400 \div 4 = m \times 4 \div 4$





### What is the next step?

 $600 = m \times 2$ 

**Option 1** 

**Option 2** 

600 **÷ 2** = m x 2 **÷ 2** 

**Option 3** 

**Option 4** 

 $600 \div 3 = m \times 3 \div 3$ 

PANIC!!

### $600 \times 2 = m \times 2 \times 2$



### What is the next step?

 $450 = m \times 10$ 

**Option 1** 

 $450 \times 10 = m \times 10 \times 10$ 

**Option 2** 

**Option 3** 

**Option 4** 

 $450 \div 450 = m \times 10 \div 450$ 

PANIC!!

### $450 \div 10 = m \times 10 \div 10$





### **Calculating Mass: Your Turn**

- Weight = mass x gravitational field strength (N) (kg) (N/kg)
- Calculate the mass of a 670 N astronaut in a gravitational field with a strength of 9.8 N/kg.

### $W = m \times g$

# eld strength g) tational field with a



# **Calculating Mass: Your Turn**

- Weight mass x gravitational field strength = (N/kg)(N) (kg)
- Calculate the mass of an object 450N object in a gravitational field with a strength of 20 N / kg.
- $W = m \times g$



# Astronaut Tim Peake has a mass of 58 kg. Calculate his weight on different planets

| Planet  | g (N/kg) | Weight (N)             |
|---------|----------|------------------------|
| Mercury | 3.7      | W = m x g = 58 x 3.7 = |
| Venus   | 8.9      |                        |
| Earth   | 10.0     |                        |
| Mars    | 3.7      |                        |
| Jupiter | 23.1     |                        |
| Saturn  | 9.0      |                        |
| Uranus  | 8.7      |                        |
| Neptune | 11.0     |                        |
|         |          |                        |

| = 214.6 |
|---------|
|         |
|         |
|         |
|         |
|         |
|         |
|         |



# Weight on Different planets

Different planets have different gravitational field strengths.

This is because they have different \_\_\_\_\_. The larger the mass of the planet, the \_\_\_\_\_\_ the gravitational field strength.

Our weight will be different on different planets because of the different \_\_\_\_\_\_.

Our \_\_\_\_\_ does not change.



### **Independent Practice** g

- Weight gravitational field strength Ξ mass Х (N/kg)(N) (kg)

- 1. Calculate the weight of a 5kg object in a gravitational field with a strength of 9 N / kg. 2. Calculate the weight of a 2.1 kg object in a gravitational field with a strength of 23.1 N / kg. 3. Calculate the weight of a 1200g object in a gravitational field with a strength of 9.0 N / kg. 4. Calculate the weight of a 90 g object in a gravitational field with a strength of 3.7 N / kg. 5. Calculate the mass of a 4500N object in a gravitational field with a strength of 8 N / kg. 6. Calculate the mass of a 3200N object in a gravitational field with a strength of 1.6 N / kg.



