Mathematics

3D Co-ordinates

Mr Millar

Try this

A $3 \times 3 \times 3$ cube has an x, y and z co-ordinate.

For example, the dot has co-ordinates (1, 3, 1).

Write down the co-ordinates of the other dots

Connect

Copy the cube and plot the co-ordinates:
$(0,3,0)$
(7, 7, 0)
$(3,0,0)$
$(3,3,2)$

Write the co-ordinates of a point you can't see on the grid.

Independent task

Somewhere in the grid a piece of treasure is hidden! You will get a series of clues which will lead to the treasure.

Clue 1:

The x co-ordinate + z co-ordinate = y co-ordinate

x	y	z	x	y	z
0	0	0	1	2	0
0	0	1	1	2	1
0	0	2	1	2	2
0	0	3	1	2	3
0	1	0	1	3	0
0	1	1	1	3	1
0	1	2	1	3	2
0	1	3	1	3	3
0	2	0	2	0	0
0	2	1	2	0	1
0	2	2	2	0	2
0	2	3	2	0	3
0	3	0	2	1	0
0	3	1	2	1	1
0	3	2	2	1	2
0	3	3	2	1	3
1	0	0	2	2	0
1	0	1	2	2	1
1	0	2	2	2	2
1	0	3	2	2	3
1	1	0	2	3	0
1	1	1	2	3	1
1	1	2	2	3	2
1	1	3	2	3	3

\mathbf{x}	\mathbf{y}	\mathbf{z}
3	0	0
3	0	1
3	0	2
3	0	3
3	1	0
3	1	1
3	1	2
3	1	3
3	2	0
3	2	1
3	2	2
3	2	3
3	3	0
3	3	1
3	3	2
3	3	3

These are the remaining possibilities after the

Explore

Find the treasure with the other clues
Clue 2: The treasure is not to be found at any of the corners

Clue 3: The z co-ordinate < the y co-ordinate

Clue 4: The answer contains exactly 2 prime numbers

Clue 5: The x co-ordinate > the z co-ordinate

Clue 6: Only 1 of the co-ordinates is a square number (0 is not a square number) Independent Task

\mathbf{x}	y	z	x	y	z
0	0	0	1	2	0
0	0	1	1	2	1
0	0	2	1	2	2
0	0	3	1	2	3
0	1	0	1	3	0
0	1	1	1	3	1
0	1	2	1	3	2
0	1	3	1	3	3
0	2	0	2	0	0
0	2	1	2	0	1
0	2	2	2	0	2
0	2	3	2	0	3
0	3	0	2	1	0
0	3	1	2	1	1
0	3	2	2	1	2
0	3	3	2	1	3
1	0	0	2	2	0
1	0	1	2	2	1
1	0	2	2	2	2
1	0	3	2	2	3
1	1	0	2	3	0
1	1	1	2	3	1
1	1	2	2	3	2
1	1	3	2	3	3

\mathbf{x}	\mathbf{y}	\mathbf{z}
3	0	0
3	0	1
3	0	2
3	0	3
3	1	0
3	1	1
3	1	2
3	1	3
3	2	0
3	2	1
3	2	2
3	2	3
3	3	0
3	3	1
3	3	2
3	3	3

Answers

Try this

A $3 \times 3 \times 3$ cube has an x, y and z co-ordinate.

For example, the dot has co-ordinates (1, 3, 1).

Write down the co-ordinates of the other dots$(1,2,0)$
$(2,3,2)$

- $(3,7,2)$

Connect

Copy the cube and plot the co-ordinates:
$(0,3,0)$
(7, 7, 0)
$(3,0,0)$
$(3,3,2)$

Write the co-ordinates of a point you can't see on the grid.
(eg 1, 1, 1)

Explore

Find the treasure with the other clues
Clue 2: The treasure is not to be found at any of the corners

Clue 3: The z co-ordinate < the y co-ordinate

Clue 4: The answer contains exactly 2 prime numbers

Clue 5: The x co-ordinate > the z co-ordinate

Clue 6: Only 1 of the co-ordinates is a square number (0 is not a square number) The treasure is hidden in (2, 3, 1)

x	y	z
0	0	0
0	0	1
0	0	2
0	0	3
0	1	0
0	1	1
0	1	2
0	1	3
0	2	0
0	2	1
0	2	2
0	2	3
0	3	0
0	3	1
0	3	2
0	3	3
1	0	0
1	0	1
1	0	2
1	0	3
1	1	0
1	1	1
1	1	2
1	1	3

x	y	z
1	2	0
1	2	1
1	2	2
1	2	3
1	3	0
1	3	1
1	3	2
1	3	3
2	0	0
2	0	1
2	0	2
2	0	3
2	1	0
2	1	1
2	1	2
2	1	3
2	2	0
2	2	1
2	2	2
2	2	3
2	3	0
2	3	1
2	3	2
2	3	3

\mathbf{x}	\mathbf{y}	\mathbf{z}
3	0	0
3	0	1
3	0	2
3	0	3
3	1	0
3	1	1
3	1	2
3	1	3
3	2	0
3	2	1
3	2	2
3	2	3
3	3	0
3	3	1
3	3	2
3	3	3

