Triple - Chemistry - Key Stage 4

Quantitative Chemistry

Volumes of gases

Mrs. Begum

Periodic Table of Elements

				Key:													
1 H hydrogen 1		rel	ative atomi	c mass – Name –	→ 1 H ← hydrogen 1 ←	Atomic Atomic	symbol (proton ni	umber)									He
7 Li lithium 3	9 Be beryllium 4											B boron 5	C carbon	N nitrogen	16 O oxygen 8	19 F fluorine 9	Ne
Na sodium	Mg magnesium											Al aluminium 13	Si silicon	P phosphorus	32 S sulfur 16	35.5 Cl chlorine	Ar Ar argon 18
39 K potassium 19	Ca calcium 20	SC scandium 21	48 Ti titanium 22	Vanadium 23	Cr chromium	Mn manganese 25	Fe iron 26	Co cobalt 27	59 Ni nickel 28	63.5 Cu copper 29	Zn zinc 30	70 Ga gallium 31	73 Ge germanium 32	75 As arsenic 33	79 Se selenium 34	Br bromine 35	Kr krypton 36
Rb rubidium	Sr strontium	89 Y yttrium 39	91 Zr zirconium 40	Nb niobium	96 Mo molybdenum 42	[97] TC technetium 43	Ru ruthenium	Rh rhodium	Pd palladium	Ag silver	Cd cadmium	115 In indium 49	Sn	Sb antimony	Te	127 iodine 53	Xe xenon 54
133 Cs caesium 55	137 Ba barium 56	La*	178 Hf hafnium 72	181 Ta tantalum	184 W tungsten	186 Re	190 Os osmium 76	192	195 Pt platinum 78	197 Au gold 79	201 Hg mercury 80	204 TI thallium 81	207 Pb	209 Bi bismuth 83	[209] Po polonium 84	[210] At astatine 85	[222] Rn radon 86
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[267] Rf rutherfordium 104	[270] Db dubnium 105	[269] Sg seaborgium 106	[270] Bh bohrium 107	[270] Hs hassium 108	[278] M† meitnerium 109	[281] DS darmstadtium	[281] Rg roentgenium 87	[285]	[286] Nh nihonium 113	[289] FI flerovium 114	[289] MC moscovium 115	[293] LV livermorium 116	[293] TS tennessine 117	[294] Og organesson 118

^{*} The lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omitted.

Relative atomic masses for Cu and Cl have not been rounded to the nearest whole number.

Task 1

Calculate the volume of gas in:

- 1. 4 g of H₂
- 2. 8 g of CH₄
- 3. 3.55 g of Cl₂
- 4. 0.002 g of He
- 5. 8.8 g of CO₂
- 6. 2 g of Ar
- 7. $1g of N_2$
- 8. 16 g of O₂

Task 2

1. What volume of carbon dioxide is produced when 125 g of calcium carbonate is thermally decomposed?

$$CaCO_3$$
 — $CaO + CO_2$

Balance symbol equation	
Calculate M _r of CaCO ₃	
Moles of CaCO ₃	
Work out the ratio	
Calculate the volume of carbon dioxide	

Task 3

1. What volume of oxygen is produced when 0.34 g hydrogen peroxide is left to decompose?

$$2H_{2}O_{2} \longrightarrow 2H_{2}O + O_{2}$$

2. What volume of nitrogen is needed to produce 6.8 g of ammonia?

$$N_2 + 3H_2 \longrightarrow 2NH_3$$

3. What volume of chlorine is needed to produce 4.68 g sodium chloride?

4. What volume of oxygen is required to produce 2 g sodium oxide? Answer in cm³.

$$4Na + O_2 \longrightarrow 2Na_2O$$

Task 1 answers

- 1. $4 g of H_2$. moles = 4/2 = 2. Volume = 2 x 24 = 48 dm³
- 2. 8 g of CH_{4} . moles = 8/16 = 0.5. Volume = 0.5 x 24 = 12 dm³
- 3. 3.55 g of Cl_2 . moles = 3.55/71 = 0.05. Volume = 0.05 x 24 = 1.2 dm³
- 4. 0.002 g of He. moles = 0.002/2 = 0.001. Volume = $0.001 \times 24 = 0.024 \text{ dm}^3$
- 5. 8.8 g of CO_2 . moles = 8.8/44 = 0.2 Volume = 0.2 x 24 = 4.8 dm³
- 6. 2 g of Ar. moles = 2/40 = 0.05 Volume = $0.05 \times 24 = 1.2 \text{ dm}^3$
- 7. $\log \log N_2$. moles = 1/28 = 0.036. Volume = 0.036 x 24 = 0.86 dm³
- 8. $16g ext{ of } O_2$. moles = 16/32 = 0.5 Volume = 0.5 x 24 = 12 dm³

Task 2 answers

1. What volume of carbon dioxide is produced when 125 g of calcium carbonate is thermally decomposed?

$$CaCO_3$$
 CaO + CO_2

Balance symbol equation	CaCO ₃ CaO + CO ₂
Calculate M _r of CaCO ₃	CaCO ₃ = 100
Moles of CaCO ₃	125 / 100 = 1.25
Work out the ratio	Ratio 1:1 Moles of CO ₂ = 1.25
Calculate the volume of carbon dioxide	Volume = $1.25 \times 24 = 30 \text{ dm}^3$

Task 3 answers

1. What volume of oxygen is produced when 0.34 g hydrogen peroxide is left to decompose?

$$2H_2O_2 \longrightarrow 2H_2O + O_2$$
 Volume = 0.12 dm³

2. What volume of nitrogen is needed to produce 6.8 g of ammonia?

$$N_2 + 3H_2 - 2NH_3$$
 Volume = 4.8 dm³

3. What volume of chlorine is needed to produce 4.68 g sodium chloride?

2Na +
$$Cl_2$$
 > 2NaCl **Volume = 0.96 dm**³

4. What volume of oxygen is required to produce 2 g sodium oxide? Answer in cm³.

$$4Na + O_2 - 2Na_2O$$
 Volume = **387** cm³

