Independent Task
 To identify angles within shapes

Mr Critchlow

To Start

Take a look at the sequences below, can you complete them by filling in the missing numbers and saying the rule. The first one has been done for you.

Sequence	Rule
25, 30, 35, 40, 45, 50	Adding 5 every time
, , 104, 106, _, —. 112	
10, 9.8, 9.6, _ \longrightarrow, 9,	
13, _ , _ , 22, 25, ${ }_{\text {, }}, 31$	
2000, 1000, 500, _ , 125,	
316, 304, 292, _, __ -	
13, 26, ¢, 104, __ , ¢ 832	

Moving On - label the angles as acute, obtuse or right angle

Main Task-1

Read the statements carefully. You must decide if they are SOMETIMES true, ALWAYS true or NEVER true. Use a diagram or 2 for each to prove your thinking.

A triangle cannot have two obtuse angles.

A five sided shape does not have any acute angles.

A four sided shape has four right angles.

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{array}
$$

Main Task-2

Read the statements carefully. You must decide if they are SOMETIMES true, ALWAYS true or NEVER true. Use a diagram or 2 for each to prove your thinking.

Main Task - 3

Read the statements carefully. You must decide if they are SOMETIMES true, ALWAYS true or NEVER true. Use a diagram or 2 for each to prove your thinking.

A pentagon can not have three acute angles.

All regular shapes, with more than four sides, only have obtuse angles.

A triangle only has acute angles.

