Maths

1. Use the graph to solve

$$y = x^2$$
$$y = 2x + 3$$

2. Is x = 6 and y = 0 a solution to both equations?

$$x^2 + y^2 = 36$$

$$x - 2y = 6$$

What does this tell you about the point (6,0)?

3. Is (-3, 2) a point of intersection of these equations?

$$x^2 + y^2 = 13$$
$$y = x + 1$$

Find the value of x if (x, 3) is a point of intersection?

4. Estimate the solutions of these equations to 1 decimal place.

5. Explain why these two equations only have one set of solutions.

Can you think of two equations where there would be no solutions?

Answers

1. Use the graph to solve

$$y = x^2$$
$$y = 2x + 3$$

2. Is x = 6 and y = 0 a solution to both equations?

Yes because

$$x^2 + y^2 = 36$$
 these solutions
 $x - 2y = 6$ work in both
equations.

What does this tell you about the point (6,0)?

It is solution and therefore a point of intersection on the graph of these two equations.

3. Is (-3, 2) a point of intersection of these equations?

$$x^2 + y^2 = 13$$
$$y = x + 1$$

No because these solutions don't work in the second equation.

Find the value of x if (x, 3) is a point of intersection? x = 2

4. Estimate the solutions of these equations to 1 decimal place.

5. Explain why these two equations only have one set of solutions.

Can you think of two equations where there would be no solutions?

e.g.
$$xy = -16$$
 and $y = x$

