Add and subtract two column vectors to give a resultant vector

1. Look at the diagram.

- (a) Write the following as column vectors
- (i) *AB*
- (ii) \overrightarrow{BC}

- (iii) \overrightarrow{AC}
- (b) Use the column vectors from part (a) to show that $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$
- (c) Now use your answers to part (a) to show that $\overrightarrow{AC} - \overrightarrow{BC} = \overrightarrow{AB}$

2.
$$s = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$
 $t = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$

- (a) Calculate the following
- (i) s+t (ii) s-t (iii) t-s

- (b) Match each of the resultant vectors from part (a) to the following diagrams.

3. If
$$q = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$
 $r = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ $s = \begin{pmatrix} -3 \\ -2 \end{pmatrix}$

$$r = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$$

$$s = \begin{pmatrix} -3 \\ -2 \end{pmatrix}$$

Find:

$$(a) q + r$$

(a)
$$q + r$$
 (b) $q + s$ (c) $r + s$

$$(c) r + s$$

$$(d) q - r$$

(d)
$$q - r$$
 (e) $q - s$ (f) $r - s$

$$(f) r - s$$

(g)
$$r - q$$
 (h) $s - q$ (i) $s - r$

$$(h) s - q$$

$$(i) s - r$$

4. If
$$x = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$$
, $y = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and $z = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$

A calculation involving x and y gives the following resultant vectors.

What could the calculation be?

(a)
$$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

(a)
$$\begin{pmatrix} 1 \\ -3 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$

(c)
$$\begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

(c)
$$\begin{pmatrix} -1 \\ 3 \end{pmatrix}$$
 (d) $\begin{pmatrix} -1 \\ -5 \end{pmatrix}$

Answers

1. Look at the diagram.

- (a) Write the following as column vectors
- (i) \overrightarrow{AB} $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ (ii) \overrightarrow{BC} $\begin{pmatrix} 4 \\ -1 \end{pmatrix}$ (iii) \overrightarrow{AC} $\begin{pmatrix} 6 \\ 2 \end{pmatrix}$

- (b) Use the column vectors from part (a) to
- show that $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ $\binom{2+4}{3-1} = \binom{6}{2}$

$$\binom{2+4}{3-1} = \binom{6}{2}$$

(c) Now use your answers to part (a) to show that $\overrightarrow{AC} - \overrightarrow{BC} = \overrightarrow{AB}$ $\begin{pmatrix} 6 - 4 \\ 2 - -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$

that
$$\overrightarrow{AC} - \overrightarrow{BC} = \overrightarrow{AB}$$

$$\begin{pmatrix} 6 - 4 \\ 2 - -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

2. $s = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ $t = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$

- (a) Calculate the following
- (i) $s + t \begin{pmatrix} -2 \\ -1 \end{pmatrix}$ (ii) $s t \begin{pmatrix} 6 \\ -3 \end{pmatrix}$ (iii) $t s \begin{pmatrix} -6 \\ 3 \end{pmatrix}$
- (b) Match each of the resultant vectors from part (a) to the following diagrams.

3. If
$$q = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$$
 $r = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ $s = \begin{pmatrix} -3 \\ -2 \end{pmatrix}$

$$r = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$$

$$s = \begin{pmatrix} -3 \\ -2 \end{pmatrix}$$

Find:

(a)
$$\mathbf{q} + \mathbf{r}$$

$$(b) q +$$

(a)
$$q + r$$
 (b) $q + s$ (c) $r + s$ $\binom{9}{3}$ $\binom{1}{3}$ $\binom{2}{-4}$

(d)
$$\mathbf{q} - \mathbf{r}$$

$$\begin{pmatrix} -1 \\ 7 \end{pmatrix}$$

(e)
$$q - s$$
 (f) $r - s$ $\binom{7}{7}$ $\binom{8}{0}$

(g)
$$\mathbf{r} - \mathbf{q}$$
 (h) $\mathbf{s} - \mathbf{q}$ (i) $\mathbf{s} - \mathbf{r}$ $\begin{pmatrix} 1 \\ -7 \end{pmatrix}$ $\begin{pmatrix} -8 \\ 0 \end{pmatrix}$

4. If
$$x = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$$
, $y = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ and $z = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$

A calculation involving x and y gives the following resultant vectors.

What could the calculation be?

(a)
$$\begin{pmatrix} -1 \\ -3 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$ z - y or y +x

(c)
$$\begin{pmatrix} 0 \\ 2 \end{pmatrix}$$
 y - z (d) $\begin{pmatrix} -1 \\ -5 \end{pmatrix}$ x + z

