Stopping Distance

Mr Saville

Warm up

1. What is the equation linking acceleration, force and mass?
2. What is the equation linking acceleration, final velocity, initial velocity and time?
3. A car is travelling at $20 \mathrm{~m} / \mathrm{s}$ when the lights turn to red. It takes 3.2 seconds to stop the car. Calculate the deceleration. Give the unit
4. The car has a mass of $22,000 \mathrm{Kg}$. Calculate the force needed to stop the car. Give the unit.

Independent Practice

Thinking distance	Braking distance

Distractions, drugs, condition of brakes, wet/icy roads, condition of tyres, alcohol, eye sight, tiredness, age, road condition

Independent Practice

1. Use the graph to describe the pattern shown in the data. (hint: talk about both thinking and braking distance, then stopping distance)
2. What is the additional stopping distance when increasing speed from 10 to 20 km/hr.
3. Why does it take a larger force to stop a vehicle moving faster?
4. Why are large decelerations dangerous?

Independent Practice

Describe the factors that affect the stopping distance of a vehicle. In your answer explain the difference between thinking distance, braking distance and stopping distance, how they are related and factors which affect their lengths. (6)

