
Lesson 4: Data Validation

Programming Part 3: Iteration

Computing

Rebecca Franks

 Materials from the Teach Computing Curriculum created by the National Centre for Computing Education1

All likely inputs

2

All likely inputs

The following code is used for data entry:

print("Enter a number between 1 and 10:")
number = int(input())

Here is a list of some of the possible entries that the user could make:

3

Five
7
7.5
12
-5
Enter key pressed
8]

Twelve
twelve
9
10
83
0
3]
#

All likely inputs

Sort the likely inputs from the previous slide into the following four categories:

● Correct
● Out of range
● ValueError
● Empty string

4

Adding validation checks

5

Enter a number program

For this task you will need the program that you just created in the previous task.

You should have already modified this program by incorporating a while loop:

oaknat.uk/comp-validationstartercode

6

1
2
3
4
5
6

try:
 print("Enter a number between 1 and 10:")
 number = int(input())
except ValueError:
 print("You must enter a number between 1 and 10:")
 number = int(input())

Task 1: Adding a range check
Step 1

An if statement is required to check if the number entered is within the correct range. Some
incomplete code has been created below to assist you with this:

Place a tick ✓ next to the instruction when you have completed it.

Step 2

Test your code to make sure that it works as expected. Use the table on the next slide to
help.
7

if and :
 not_validated = False
else:
 print("Number entered out of range")

Complete the code and incorporate it within the while loop.

Task 1: Adding a range check
Example
Note: Use this example to check your program. Given the input you see in this sample interaction, this
is the output your program should produce.

The user is prompted to enter a number Enter a number between 1 and 10:

The user enters a letter F

The user is reminded to enter a number
between 1 and 10

You must enter a number between 1
and 10:
Enter a number between 1 and 10:

The user enters a number 12

The user is told that the number is out of
range and asked to enter the number
again

Number entered out of range
Enter a number between 1 and 10:

The user enters a number 7

The program ends >>>

Task 2: Check for all likely inputs

Your code should now work when all likely inputs are entered. Test your code to make sure
that it doesn’t break when:

9

The correct data is entered
The data entered is out of range
The data entered is not an integer
No data is entered (the user presses enter without entering any input)

Task 3: Enter a name program

Step 1

Create a new file in Repl.it and enter the code below:

Step 2

The user must not be able to leave this question blank.

Tip: If nothing is entered in name then it will be equal to ""

10

1
2
3

print("Enter a name:")
name = input()
print(f"Stored name: {name}")

Create a while loop that will continue to ask for the name if the user presses the enter
key.

Task 3: Enter a name program

Step 3

Use the table on the next slide to help you with this.

11

Test your program to make sure that the user is prompted if they press the enter
key without entering any data.

Task 3: Enter a name program
Example
Note: Use this example to check your program. Given the input you see in this sample interaction, this is
the output your program should produce.

The user is prompted to enter a name Enter a name:

The user presses the enter key

The user is reminded that the name cannot be left blank
and is prompted to enter a name

Name cannot be left blank
Enter a name:

The user presses the enter key

The user is reminded that the name cannot be left blank
and is prompted to enter a name

Name cannot be left blank
Enter a name:

The user enters a name George

The name is displayed for the user Stored name: George

Task 4: Adding validation checks to your
times table program
Step 1

Step 2

There are three opportunities for user input in this quiz.

13

Find and open a copy of your completed times table quiz from Lesson 3. If you do
not have access to this then use this repl.it
(oaknat.uk/comp-ks4-timestablequiz). It should already have some basic
validation techniques used.
Save the file under a different name

Using the table on the next slide, make a list of the three variables that are
assigned an input
For each variable, decide what the likely inputs might be

https://www.google.com/url?q=https://ncce.io/ks4-timestablequiz&sa=D&source=editors&ust=1619543585238000&usg=AOvVaw0XkUkgo5Up-kN7qq_OEALk

Task 4: Adding validation checks to your
times table program

14

Inputs Likely inputs

Copy and complete the table below using the instructions on the previous slide.

Task 4: Adding validation checks to your
times table program

Step 3

Step 4

15

Incorporate validation checks for each variable that requires user input.

Test your program using all the likely inputs as test data

Parson’s puzzle

16

Parson’s puzzle

Take a look at the code on the next slide. It contains all of the code needed to complete a
validation check. The program should only allow a number to be entered as input.

● Your job is to rearrange the lines of code so that the program will:
● Prompt the user to enter an integer
● If the user doesn’t enter an integer then it should remind the user to enter a number
● It should continue to check for an integer and remind the user until an integer is entered

Note: You might need to add indents if they are needed

17

Parson’s puzzle

18

1
2
3
4
5
6
7
8
9

print("You must enter a number:")
try:
except ValueError:
print("Enter a number:")
not_validated = True
while not_validated:
number = int(input())
not_validated = False

