Combined Science - Physics - Key Stage 4 - Forces

Forces and Elasticity 2

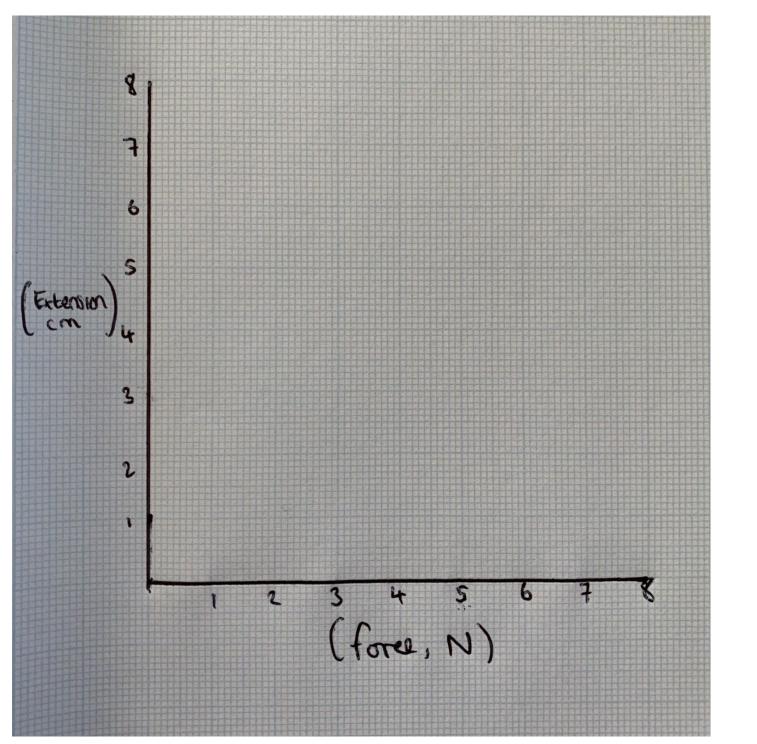
Mr Saville

Warm up - Independent task

- 1. In our investigation into springs and stretching, what was independent variable? (the thing we change)
- 2. What was the dependent variable? (the thing we measure)
- 3. What sort of relationship did we find?
- 4. What does this mean in terms of the spring's behaviour every time the force is increased?
- 5. What is the symbol for directly proportional?

You do - Independent Practice

- 1. A spring has a spring constant of 5 N/m and extends by 0.3 metres. Calculate the force needed to make this happen. $(F = k \times e)$
- 2. A spring has a spring constant of 7.5 N/m and extends by 0.25 metres. Calculate the force needed to make this happen. Give your answer to 2 significant figures.
- 3. A spring has a spring constant of 13 N/m and compresses by 70 centimetres. Calculate the force needed to make this happen.
- 4. A spring has a force of 2.1 N applied to it and a spring constant of 0.3 N /cm. Calculate the extension.
- 5. A spring has a force of 4.6 N applied to it and a spring constant of 4.3 N / m. Calculate the extension. Give your answer to 3 significant figures.


	1			
Force (N)	Extension (cm)			
	Test 1	Test 2	Test 3	М
]	0.5	0.6	0.4	(0.5+0.6+0
2	1.0	1.9	1.0	(1.0+1.0
3	1.6	1.4	1.5	
4	2.1	5.1	1.9	
5	2.4	2.5	2.5	
6	3.0	3.1	4.7	
7	3.5	3.4	3.6	
4 8	5.6	5.5	5.4	

Independent Practice

Use the results from our secondary data to plot a graph.

Force (N)	
1	
2	
3	
4	
5	
6	
7	
8	

Mean Extension (cm)
0.5
1.0
1.5
2.0
2.5
3.0
3.5
5.5

Calculating EPE - You do

- 1. A spring has a spring constant of 9.4 N/m and extends by 0.1 metres Calculate the elastic potential energy stored in the spring.
- 2. A spring has a spring constant of 15.5 N/m and extends by 0.5 metres. Calculate the elastic potential energy stored in the spring.
- 3. A 0.2m spring stretches to 0.6 m when a force is applied. The spring has a spring constant of 2 N/m. Calculate the elastic potential energy stored in the spring.

Values Equation **S**ubstitute Rearrange Answer Units

