Combined Science - Chemistry - Key Stage 4

Chemical Change Higher Tier Review

Mr Campbell

Periodic Table of Elements

Source: Oak

- 1. In terms of electrons, what is meant by oxidation and reduction?
- 2. Why can an acid be described as both weak and concentrated?
- 3. What pH are acids?
- 4. What happens to hydrogen ion concentration as pH decreases?
- 5. For every change in 1 pH value how much does hydrogen ion concentration change by?
- 6. Balance the half equation $Al^{3+} + e^{-} \rightarrow Al$
- 7. Balance the half equation $O^{2+} \rightarrow O_2 + e^{-}$
- 8. In the electrolysis of copper sulfate solution, what will form at the anode?
- 9. During electrolysis does oxidation or reduction take place at the cathode?
- 10. Balance this equation NaOH + H₂SO₄ → Na₂SO₄ + H₂O

- 1. In terms of electrons, what is meant by oxidation and reduction? Oxidation is loss of electrons, reduction is gain of electrons
- 2. Why can an acid be described as both weak and concentrated? A weak acid only partially ionises, it can be concentrated if there are a large amount of acid particles per volume
- 3. What pH are acids? Below 7
- 4. What happens to hydrogen ion concentration as pH decreases? Hydrogen ion concentration increases
- 5. For every change in 1 pH value how much does hydrogen ion concentration change by? Hydrogen ion concentration changes by a factor of 10 or one order of magnitude

- 6. Balance the half equation $Al^{3+} + 3e^{-} \rightarrow Al^{3+}$
- 7. Balance the half equation $20^{2+} \rightarrow 0_2 + 4e^{-}$
- 8. In the electrolysis of copper sulfate solution, what will form at the anode? Oxygen
- 9. During electrolysis does oxidation or reduction take place at the cathode? Reduction (positive metal ions gain electrons)
- 10. Balance this equation 2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O

Magnesium bromide can be electrolysed both when molten and as a solution.

Identify the products at the anode and cathode for the electrolysis of molten magnesium bromide and magnesium bromide solution. Include half equations for the reactions at each electrode.

Explain the difference between the products at the cathode during the electrolysis of molten magnesium bromide and magnesium bromide solution.
•••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••

Molten magnesium bromide

- Product at anode = bromine
 Half equation = 2Br⁻ → Br₂ + 2e⁻
- Product at cathode = magnesium Half equation = Mg²⁺ + 2e⁻ → Mg

Magnesium bromide solution

- Product at anode = bromine
 Half equation = 2Br⁻ → Br₂ + 2e⁻
- Product at cathode = hydrogen Half equation = 2H⁺ + 2e⁻ → H₂

Explanation - Hydrogen is formed at the cathode during the electrolysis of magnesium bromide solution because magnesium is more reactive than hydrogen.

