Circle Theorems: The perpendicular from the centre to a chord bisects the chord

Maths

Mr Chan

The perpendicular from the centre to a chord bisects the chord

1. $O M$ is perpendicular to the chord

AB.

Work out the length of BM. Give a reason for your answer.
2. $O M$ is perpendicular to the chord $A B . A B=42 \mathrm{~cm}$.

Work out the side length OM.

The perpendicular from the centre to a chord bisects the chord

3. The circle has centre O and $O R$ is a radius to the circle. $A B$ is a chord in the circle where $A M=M B$.

Work out the value of angle x.
4. OM is perpendicular to the chord $A B$. The circle has a radius of 9 cm . $C O: O M=3: 2$. Chord $A B=9 \mathrm{~cm}$.

Work out side length AC. Give your answer to 1 decimal place.

Answers

The perpendicular from the centre to a chord bisects the chord

1. $O M$ is perpendicular to the chord

AB.

Work out the length of BM.
Give a reason for your answer.
The perpendicular from the centre bisects the chord
2. $O M$ is perpendicular to the chord $A B . A B=42 \mathrm{~cm}$.

Work out the side length OM.

The perpendicular from the centre to a chord bisects the chord

3. The circle has centre O and $O R$ is a radius to the circle. $A B$ is a chord in the circle where $A M=M B$.

Work out the value of angle x.
4. OM is perpendicular to the chord $A B$. The circle has a radius of 9 cm . $C O: O M=3: 2$. Chord $A B=9 \mathrm{~cm}$.

Work out side length AC. Give your answer to 1 decimal place.

