
Combined Science - Chemistry - Key Stage 4

Developing an Electrolysis Hypothesis

Mr Campbell

Periodic Table of Elements

Source: Oak

						4 He helium 2
	11	12	14	16	19	20
	В	С	N	0	F	Ne
	boron	carbon	nitrogen	oxygen	fluorine	neon
	5	6	7	8	9	10
	27	28	31	32	35.5	40
	AI	Si	Р	S	Cl	Ar
	aluminium	silicon	phosphorus	sulfur	chlorine	argon
	13	14	15	16	17	18
	70	73	75	79	80	84
า	Ga	Ge	As	Se	Br	Kr
-	gallium	germanium	arsenic	selenium	bromine	krypton
	31	32	33	34	35	36
	115	119	122	128	127	131
d	In	Sn	Sb	Te		Xe
um	indium	tin	antimony	tellurium	iodine	xenon
	49	50	51	52	53	54
f i	204	207	209	[209]	[210]	[222]
a	TI	Pb	Bi	Po	At	Rn
g	thallium	lead	bismuth	polonium	astatine	radon
	81	82	83	84	85	86
5]	[286]	[289]	[289]	[293]	[293]	[294]
n	Nh	FI	Mc	Iv	Ts	Oa
			1-10		tennessine	~ 9
cium	nihonium	flerovium	moscovium	livermorium	tennessine	organesson

Electrolysis of solutions

At the anode If the non-metal ions is a halide ion (group 7) chloride Cl^{-} , Br^{-} , l^{-} . Then the halogen will form chlorine Cl_{2} , Br_{2} or l_{2} .

If the non-metal ion is not a halide ion then oxygen, O_{2} , forms. At the cathode If the metal is more reactive than hydrogen then hydrogen forms.

If the metal is less reactive than hydrogen (copper, silver, gold, platinum) then the metal forms.

Potassium Sodium Calcium Magnesium Aluminium Zinc Iron Tin Lead Hydrogen Copper Silver Gold Platinum

Electrolysis of solutions

Solution	Product at anode	Product at cathode
Copper chloride		
Copper sulfate		
Sodium chloride		
Sodium sulfate		

Electrolysis of solutions answers

Solution	Product at anode	Product at cathode
Copper chloride	chlorine	copper
Copper sulfate	oxygen	copper
Sodium chloride	chlorine	hydrogen
Sodium sulfate	oxygen	hydrogen

Independent task

Identify the products made at the anode and cathode during the electrolysis of the following solutions.

- 1. Silver chloride
- 2. Potassium bromide
- 3. Sodium sulfate
- 4. Copper nitrate

Independent task

Complete the sentences describing the tests for the gases below.

- 1. Hydrogen, a ______ splint gives a
- 2. Oxygen, a ______ splint will

3. Chlorine, damp blue _____ paper will turn _____ then

Independent task answers

Identify the products made at the anode and cathode during the electrolysis of the following solutions.

- 1. Silver chloride anode = chlorine cathode = silver
- 2. Potassium bromide anode = bromine cathode = hydrogen
- 3. Sodium sulfate anode = oxygen cathode = hydrogen
- 4. Copper nitrate anode = oxygen cathode = copper

Independent task answers

Complete the sentences describing the tests for the gases below.

- 1. Hydrogen, a lit splint gives a squeaky pop.
- 2. Oxygen, a glowing splint will relight.
- 3. Chlorine, damp blue Litmus paper will turn red then bleaches or white.

Independent task

Hypothesis - The greater the concentration of of copper sulfate electrolysed, the greater the mass of copper produced at the cathode.

Plan an investigation to test this hypothesis that would produce valid results.

Identify The independent variable The dependent variable Control variables

Identify your range and intervals for the independent variable.

Give a brief descriptions of the method (remember repeats).

Independent task answers

Independent variable Concentration of copper sulfate solution

Dependent variable Mass of copper produced

Control variables • Volume of solution

- The voltage of the power supply
- The temperature of the solution
- The time electrolysis is run for

Identify your range and intervals for the independent variable.

0.5 to 2 mol/dm³ going up in 0.5's

Give a brief description of how to carry out the experiment.

- Set up electrolysis equipment (you could use a diagram for this)
- Measure 50cm³ of 0.5 mol/dm³ copper sulfate solution
- Record the mass of the cathode
- Turn on the power supply at 2V for 5 minutes
- Record the mass of the cathode, the calculate the increase in mass
- Repeat 3 times
- Repeat for concentrations of 1, 1.5 and 2 mol/dm³

