Lesson 8 - Hooke's Law

Physics-KS3

Forces in Action

Mrs Wolstenholme

Reminder

Elastic deformation: an object returns to
its original shape when forces are removed

Reminder

Credit: Andy Saville

Straight line through the origin
Force is Directly Proportional to
Extension
And

Extension is Directly
 Proportional to Force

What does this mean?

If force doubles (x2)
Extension doubles (x2)
If extension triples (x3)
Force triples (x3)
If force is divided by 4
Extension is divided by 4

Fill in the missing number

Force (N)	Extension (cm)
0	0
2	5
4	10
6	$?$
8	20

Fill in the missing number

Force (N)	Extension (cm)
0	0
3	10
$?$	20
9	30
12	40

A spring has an extension of 4 cm with a force of $\mathbf{2 N}$. What will the extension be when the force is $\mathbf{8 N}$?
32 cm
8 cm

2 cm
16 cm

A spring has an extension of 4 cm with a force of $2 \mathbf{N}$. What force is needed for the extension to be 12 cm ?
6 N

1 N
8 N

4 N

A spring has an extension of 4 cm with a force of $2 \mathbf{N}$. What force is needed for the extension to be 2 cm ?
6 N

1 N
8 N

4 N

Complete the task

Force and extension

For an elastic object, force and extension are proportional.

This means if force is halved, extension is If extension is doubled, force is \qquad

Independent Task

Look at the graph:

1. At what force is the limit of proportionality?
2. How can you tell?
3. What is point B ?
4. What would happen if I let go of my spring after point B?

What does F stand for in $F=k \times e$?

Force

Extension

Spring constant

What does k stand for in $F=k \times e$?

Force

Extension

Spring constant

What does e stand for in $F=k \times e$?

Force

Extension

Spring constant

What are the units for spring constant (k)?

\square

N / cm

N / m

Calculate the force applied to a spring that stretchad 0.2 m and has a spring constant of $10 \mathrm{~N} / \mathrm{m}$

$$
\begin{aligned}
& F=k \times e \\
& F=10 \times 0.2 \\
& F=2 N
\end{aligned}
$$

Force	Spring constant x	Extension
(N)	$(\mathrm{N} / \mathrm{m})$	(m)
	$(\mathrm{N} / \mathrm{cm})$	(cm)

Your turn:

Calculate the force applied to stretch a spring with a spring constant of $16 \mathrm{~N} / \mathrm{m}$ by 0.25 m

$$
F=k \times e
$$

Calculate the force applied to stretch a spring with a spring constant of $5 \mathrm{~N} / \mathrm{m}$ by 40 cm .

$$
\mathrm{e}=40 \mathrm{~cm} \div 100=0.4 \mathrm{~m}
$$

$$
\begin{aligned}
& F=k \times e \\
& F=5 \times 0.4 \\
& F=2 N
\end{aligned}
$$

$$
\div 100
$$

Force

Your Turn:
Calculate the force applied to stretch a spring with a spring constant of $5 \mathrm{~N} / \mathrm{m}$ by 20 cm .

Step 1: Change the extension to m
Step 2: Calculate force
$\mathrm{cm} \xrightarrow{\div 100} \mathrm{~m}$

Force	Spring constant \times	Extension
(N)	$(\mathrm{N} / \mathrm{m})$	(m)
	$(\mathrm{N} / \mathrm{cm})$	(cm)

Your Turn:
Calculate the force applied if there is an extension of 30 cm and the spring constant is $40 \mathrm{~N} / \mathrm{m}$

Independent Practice

1. A spring has a spring constant of $5 \mathrm{~N} / \mathrm{m}$ and extends by 0.3 m . Calculate the force needed to make this happen.
2. A spring has a spring constant of $7.5 \mathrm{~N} / \mathrm{m}$ and extends by 0.45 m . Calculate the force needed to make this happen.
3. A spring has a spring constant of $13 \mathrm{~N} / \mathrm{m}$ and extends by 0.7 m . Calculate the force needed to make this happen.
4. An elastic band stretches. It has a spring constant of $10 \mathrm{~N} / \mathrm{m}$ and extends by 15 cm when a force is applied to it. Calculate the force needed to cause this extension.

A spring has a force of 2.1 N applied to it and a spring constant of $0.3 \mathrm{~N} / \mathrm{m}$. Calculate the extension.

$$
F=k \times e
$$

$2.1 \div \mathbf{0 . 3}=0.3 \times e \div \mathbf{0 . 3}$

$$
\begin{aligned}
& 7=e \\
& e=7 m
\end{aligned}
$$

A rubber ball has a force of 2 N applied to it and is compressed by 0.04 metres. Calculate the spring constant.

$$
F=k \times e
$$

$\mathbf{2} \div \mathbf{0 . 0 4}=k \times 0.04 \div \mathbf{0 . 0 4}$

$$
\begin{aligned}
& 50=k \\
& \mathrm{k}=50 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

Force
(N)

Spring constant x
(N / m) (N / cm)

Extension

Your Turn:
A spring has a force of 4.6 N applied to it and a spring constant of $4.3 \mathrm{~N} / \mathrm{m}$. Calculate the extension.

Independent Practice

1. A spring has a force of 7.3 N applied to it and a spring constant of $2 \mathrm{~N} / \mathrm{m}$. Calculate the extension.
2. A spring has a force of 6 N applied to it and is compressed by 0.2 metres. Calculate the spring constant.
3. A spring has a force of 4.5 N applied to it and extends by 0.08 metres. Calculate the spring constant.

Well Done!!

