Combined Science - Biology - KS4

Cell Biology

Useful Maths skills

(Downloadable student document)

Finding the mean

Finding the mean

$$
\text { Mean }=\frac{\text { Sum of all data }}{\text { Number of data points }}
$$

Attempt	1	2	3	4	5
Change in cell mass in grams	0.16	0.11	0.10	0.14	0.19

Sum of all data $=0.16+0.11+0.10+0.14+0.19=0.7$
Mean $=0.7 \div 5=0.14 \mathrm{~g}$

Pause the video to complete your task

Quick concept check: Find the mean

 number of hours required for a cell cycle.Trial

2
3
4
5 complete a cell $\begin{array}{lllll}22 & 19 & 18.5 & 21 & 25\end{array}$ cycle(hours)

Resume once you're finished

Answer

Mean $=\frac{\text { Sum of all data }}{\text { Number of data points }}$
Sum of all data $=22+19+18.5+21+25=105.5$

Mean $=105.5 \div 5=21.1$ hours

Converting units and standard form

Converting the units

$\times 1000$
 mm
 $\mu \mathrm{m}$

$1 \mathrm{~mm}=1000 \mu \mathrm{~m}$
$0.2 \mathrm{~mm}=200 \quad \mu \mathrm{~m}$
$3.4 \mathrm{~mm}=3400 \mu \mathrm{~m}$

Expressing numbers in standard form

We have learnt that $1 \mathrm{~mm}=1000 \mu \mathrm{~m}$.
So, $100 \mathrm{~mm}=\ldots \quad$?__ $\mu \mathrm{m}$

$$
100 \times 1000=100,000 \mu \mathrm{~m}
$$

We can express 100,000 $\mu \mathrm{m}$ in standard form.

$$
100,000 \mu \mathrm{~m}=1 \times 10^{5} \mu \mathrm{~m}
$$

Order of magnitude and standard form

Let's try these two questions together:

1. Express 35 mm in $\mu \mathrm{m}$. Make sure your answer is in standard form. $35 \mathrm{~mm}=35 \times 1000 \mu \mathrm{~m}=35,000 \mu \mathrm{~m}$
$35,000 \mu \mathrm{~m}=3.5 \times 10,000=3.5 \times 10 \times 10 \times 10 \times 10=3.5 \times 10^{4} \mu \mathrm{~m}$
2. Express 90 mm in $\mu \mathrm{m}$. Make sure your answer is in standard form. $90 \mathrm{~mm}=90 \times 1000 \mu \mathrm{~m}=90,000 \mu \mathrm{~m}$ $90,000 \mu \mathrm{~m}=9 \times 10,000=9 \times 10 \times 10 \times 10 \times 10=9 \times 10^{4} \mu \mathrm{~m}$

Using standard form to express

 small numbersThere is a cell of $0.00001 \mu \mathrm{~m}$.
We can also express this in standard form.

$0.00001 \mu \mathrm{~m}=1 \times 10^{-5} \mu \mathrm{~m}$ vunu

Using standard form to express

small numbers

There is a cell of 0.0005 mm .
Express the above in standard form.

$0.0005 \mathrm{~mm}=5 \times 10^{-4} \mathrm{~mm}$

There is a cell of $0.007 \mu \mathrm{~m}$.
Express the above in standard form.

$$
\begin{aligned}
& 0.007 \\
& \text { vuv }
\end{aligned} \mathrm{m}^{2}=7 \times 10^{-3} \mathrm{~mm}
$$

Pause the video to complete your task

Express the following measurements in standard form.

1. $329,000 \mu \mathrm{~m}=\ldots \quad \mu \mathrm{m}$
2. $9.5 \mathrm{~mm}=\ldots \quad \mu \mathrm{m}$
3. $256,000 \mu \mathrm{~m}=\ldots \mathrm{mm}$
4. $183,000 \mu \mathrm{~m}=\ldots \mathrm{mm}$

Resume once you're finished

Pause the video to complete your task

Express the following measurements in standard form.

$$
\begin{aligned}
& \text { Answers: } \\
& \text { 1. } 329,000 \mu \mathrm{~m}=\ldots \mu \mathrm{m} \\
& \text { 2. } 9.5 \mathrm{~mm}= \\
& \text { 3. } 256,000 \mu \mathrm{~m}=\ldots \mathrm{mm} \\
& \text { 4. } 183,000 \mu \mathrm{~m}=\ldots \mathrm{mm} \\
& \text { 2. } 9.5 \times 10^{3} \mu \mathrm{~m} \\
& \text { 3. } 2.56 \times 10^{2} \mathrm{~mm} \\
& \text { 4. } 1.38 \times 10^{2} \mathrm{~mm}
\end{aligned}
$$

Resume once you're finished

Using the magnification equation

Finding the magnification using

 the magnification equation
Image size
 Magnification =
 Actual size

E.g. Calculate the magnification of an object that is $\mathbf{0 . 0 0 1} \mathbf{m m}$ long but has an image 100mm long.

$$
\frac{100}{0.001}=100,000 x
$$

Finding the actual size of cells

What is the actual size of an object that looks $\mathbf{3 2} \mathbf{~ m m}$ under a $\mathbf{1 0 x}$ magnification?

$$
\text { Magnification }=\frac{\text { Image size }}{\text { Actual size }}
$$

$$
10=\frac{32}{\text { Actual size }}
$$

Actual size $=\frac{32}{10}=3.2 \mathrm{~mm}$

Finding the image size
E.g. A cell that is $\mathbf{2 0} \boldsymbol{\mu m}$ long is viewed under 2000x magnification. How long is the image?

$$
\begin{aligned}
& \text { Magnification }=\frac{\text { Image size }}{\text { Actual size }} \\
& 2000=\frac{\text { Image size }}{20} \\
& \begin{aligned}
\text { Image size }=2000 \times 20 & =40,000 \mu \mathrm{~m} \\
& =40 \mathrm{~mm}
\end{aligned}
\end{aligned}
$$

Pause the video to complete your task

What is the magnification?
The width of the root is 45 mm under the microscope while its actual size is $150 \mu \mathrm{~m}$. What is the magnification?

Resume once you're finished

Pause the video to complete your task

What is the magnification?

The width of the root is 45 mm under the microscope while its actual size is $150 \mu \mathrm{~m}$. What is the magnification?

$$
\begin{aligned}
& \frac{45 \mathrm{~mm}}{150 \mu \mathrm{~m}} \\
= & \frac{45,000 \mu \mathrm{~m}}{150 \mu \mathrm{~m}} \\
= & 3000 \mathrm{x}
\end{aligned}
$$

Resume once you're finished

Finding the percentage changes

Finding the percentage change

Steps 1: find the change

Step 2: apply Percentage change $=\frac{\text { change }}{\text { starting value }} \times 100$

There is a piece of carrot. The carrot had a mass of 3 g before being put complete into water. After one hour, the carrot was removed from the water, blotted dry and weighed. The mass of the carrot was 3.5 g . Calculate the percentage change in mass.

The change $=3.5-3=0.5$
Percentage change $=0.5 \div 3 \times 100=16.7 \%$.

Finding the percentage change

Steps 1: find the change

$$
\text { Step 2: apply Percentage change }=\frac{\text { change }}{\text { starting value }} \times 100
$$

There is a piece of carrot. The carrot had a mass of 3 g before being put complete into brine. After one hour, the carrot was removed from the water, blotted dry and weighed. The mass of the carrot was 2.5 g . Calculate the percentage change in mass.

The change $=2.5-3=-0.5$
Percentage change $=-0.5 \div 3 \times 100=-16.7 \%$.

Pause the video to complete your task

Complete the table below.

Concentration of sugar solution $\left(\mathrm{mol} / \mathrm{dm}^{3}\right)$	Starting mass of potato cylinder (g)	Final mass of potato cylinder (g)	Change in mass of potato cylinder (g)
Percentage change in mass of potato cylinder (\%)			
0	2.60	3.07	0.47
0.1	2.81	3.14	
0.2	2.69	2.72	
0.3	2.8	2.35	
0.4	2.65	2.05	

Answers

Concentr ation of sugar solution $($ mol/dm 3	Starting mass of potato (g) $)$	Final mass of potato cylinde $\mathrm{r}(\mathrm{g})$	Change in mass of potato cylinder	Percentage change in mass of potato cylinder (\%)
0	2.6	3.1	0.47	18.1
0.1	2.8	3.1	0.33	11.7
0.2	2.7	2.7	0.03	1.1
0.3	2.8	2.4	-0.5	-16.1
0.4	2.7	2.1	-0.6	-22.6

