Chemistry - Triple Science - Key Stage 4

Processing Titration Results

Mr Campbell

Periodic Table of Elements

Source: Oak

						4 He helium 2
	11	12	14	16	19	20
	В	С	Ν	0	F	Ne
	boron	carbon	nitrogen	oxygen	fluorine	neon
	5	6	7	8	9	10
	27	28	31	32	35.5	40
	AI	Si	Ρ	S	Cl	Ar
	aluminium	silicon	phosphorus	sulfur	chlorine	argon
	13	14	15	16	17	18
	70	73	75	79	80	84
า	Ga	Ge	As	Se	Br	Kr
-	gallium	germanium	arsenic	selenium	bromine	krypton
	31	32	33	34	35	36
	115	119	122	128	127	131
d	In	Sn	Sb	Te		Xe
um	indium	tin	antimony	tellurium	iodine	xenon
	49	50	51	52	53	54
f i	204	207	209	[209]	[210]	[222]
a	TI	Pb	Bi	Po	At	Rn
g	thallium	lead	bismuth	polonium	astatine	radon
	81	82	83	84	85	86
5]	[286]	[289]	[289]	[293]	[293]	[294]
n	Nh	FI	Mc	Iv	Ts	Oa
			1-10	livermorium	tennessine	~ 3
cium	nihonium	flerovium	moscovium	livermorium	tennessine	organesson

Titration method

- with acid. 1. Fill the
- to measure 25cm³ of alkali into the conical flask. 2. Use a
- 3. Add an to the alkali.
- 4. Take the initial reading on the
- 5. Add the acid to the alkali while
- 6. Stop adding the acid when the indicator changes colour. Record the final reading on the burette - This is your rough titration.
- 7. Repeat the titration this time adding
- 8. Repeat until

results are achieved.

the conical flask. hear the end point.

Processing titration results

]	2	
Final volume (cm ³)	23.45	45.70	
Initial volume (cm ³)	0.00	23.45	
Titre (cm ³)			

Processing titration results

]	2	
Final volume (cm ³)	23.45	45.70	
Initial volume (cm ³)	0.00	23.45	
Titre (cm ³)	23.45	22.25	

Moles, concentration and volume

	A solution had a volume of 25cm ³ concentration of 0.125 mol/dm ³ . C the number of moles in this solut
Values	
Equation	
S ubstitute	
Rearrange	
Answer	
Units	

Moles, concentration and volume

	A solution had a volume of 50cm ³ concentration of 0.275 mol/dm ³ . (the number of moles in this solut
Values	
Equation	
S ubstitute	
Rearrange	
Answer	
Units	

Titration calculation

A student added 25cm³ of an unknown concentration of sodium hydroxide into a conical flask. They carried out a titration using 0.100 mol/dm³ of hydrochloric acid. The mean volume of hydrochloric acid needed to exactly neutralise the acid was 26.50cm³. Calculate the concentration of the sodium hydroxide.

 $NaOH + HCI \rightarrow NaCI + H_2O$

Titration calculation

A student added 25cm³ of 0.150mol/dm³ of sodium hydroxide into a conical flask. They carried out a titration using an unknown concentration of of citric acid. The results of the titration are shown below. Calculate the concentration of the citric acid.

$$C_6H_8O_7 + 3NaOH \rightarrow C_6H_5O_7Na_3 + 3H_2C$$

	Titration 1	Titration 2	Titration 3	Titration 4	Titration 5
Volume of C ₆ H ₈ O ₇ added in cm ³	12.50	11.10	10.20	10.15	10.15

Independent task

A student titrated 25 cm³ of 0.075 mol/dm³ of sulfuric acid with an unknown concentration of sodium hydroxide. The mean volume of sodium hydroxide added was 17.55cm³. Calculate the concentration of the sodium hydroxide solution.

$2 \text{ NaOH} + H_2 SO_4 \rightarrow Na_2 SO_4 + 2 H_2 O_4$

- 1. Calculate moles of sulfuric acid using moles = concentration x volume (remember to make sure your volume is in dm^3)
- 2. Use the ratio from the balanced equation to work out moles of HC
- 3. Calculate the concentration of HCI using concentration = moles/volume (remember to make sure your volume is in dm^3)

Independent task answer

 $2 \text{ NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2 \text{H}_2\text{O}_4$

Moles (NaOH) = concentration x volume

 $25 \text{ cm}^3 = 0.025 \text{ dm}^3$

Moles NaOH = $0.075 \times 0.025 = 1.875 \times 10^{-5}$ (0.00001875)

Independent task answer

Ratio of NaOH:HCl 2:1

So moles of HCl = $1.875 \times 10^{-5} / 2 = 9.375 \times 10^{-6}$

Concentration (HCI) = moles/volume

Volume of HCl = 17.55 cm³ so 0.01755 dm³

Concentration = $9.375 \times 10^{-6} / 0.01755 = 5.3 \times 10^{-4} \text{ mol/dm}^3$

Independent task

A student carried out a titration using 25cm³ of 0.200 mol/dm³ HCl. NaOH was end to the HCI and the volume needed to neutralise the HCI was

recorded. Use the results of the titration to calculate the concentration of

NaOH.

$NaOH + HCI \rightarrow NaCI + H_2O$

	Titration 1	Titration 2	Titration 3	Titration 4	Titration 5
Volume of NaOH added in cm ³	12.50	11.10	10.20	10.15	10.15

- 1. Calculate moles of HCI using moles = concentration x volume (remember to make sure your volume is in dm³)
- 2. Use the ratio from the balanced equation to work out moles of NaOH
- 3. Calculate the mean volume of NaOH using the concordant results from the titration.
- 4. Calculate the concentration of HCl using concentration = moles/volume (remember to make sure your volume is in dm^3)

Independent task answer

- 1. Moles (HCl) = $0.200 \times 0.025 = 5 \times 10^{-3}$
- 2. Ratio HCI:NaOH 1:1 so moles of NaOH = 5×10^{-3}
- 3. Mean volume of NaOH = 10.15 cm³
- 4. Concentration of NaOH = $5 \times 10^{-3} / 0.01015 = 0.493 \text{ mol/dm}^{-3}$

