Chemistry - Triple Science - Key Stage 4

Processing Titration Results

Mr Campbell

Periodic Table of Elements

key:																	
H																	
$\underset{\substack{\text { mimim }}}{\mathrm{Li}}$	Be^{\prime}											$\underset{\substack{\text { bason } \\ \text { bin }}}{\text { B }}$	$\underset{\substack { \text { catomen } \\ \begin{subarray}{c}{12{ \text { catomen } \\ \begin{subarray} { c } { 1 2 } }\end{subarray}}{\substack{\text { cosen }}}$	$\stackrel{14}{\substack{\text { minosen } \\ \sim}}$		$\underset{\substack{\text { mosiog }}}{19}$	$\underset{\substack{\text { neow } \\ \text { neo } \\ 10}}{\text { Ne }}$
$\begin{aligned} & { }^{23} \\ & \mathrm{Na} \end{aligned}$																	
			$\underset{\substack{\text { andimim } \\ \text { midim }}}{ }$				$\underset{\substack { \text { sen } \\ \begin{subarray}{c}{\text { fen } \\ 26{ \text { sen } \\ \begin{subarray} { c } { \text { fen } \\ 2 6 } } \\ {\hline}\end{subarray}}{ }$				$\begin{aligned} & \text { Kn } \\ & \substack{\text { nnc } \\ 300} \end{aligned}$	$\underbrace{\text { and }}_{\substack{\text { gamm } \\ \text { gin }}}$					
		$\underbrace{89}_{\substack{\text { vitum } \\ 39}}$	$\underbrace{81}_{\substack{\text { zimatiom } \\ \text { and }}}$										$\mathrm{Sn}_{\mathrm{n}}^{19}$				(inc
		$\underset{\substack{\text { Lenamen } \\ \text { Lem }}}{139}$					$\underset{\substack{\text { comum } \\ \text { cicm }}}{100}$		(195								
	$\underset{\substack{\text { Rad } \\ \text { deamem }}}{ }$		$\begin{aligned} & {[287]} \\ & \mathbf{R}^{287} \end{aligned}$	$\begin{aligned} & {[220] 1} \\ & \mathrm{Db} \end{aligned}$		${ }_{B h]}^{\left.{ }^{2} 20\right]}$			$\begin{aligned} & {[281]} \\ & \mathrm{Ds} \mathrm{~s} \end{aligned}$		$\begin{aligned} & 12851 \\ & { }_{2} \end{aligned}$		$\begin{aligned} & \mid 2891 \\ & \mathrm{FI} \mid \end{aligned}$	$\begin{aligned} & \text { [289] } \\ & \mathbf{M c} \end{aligned}$	$\begin{gathered} {[23]} \\ \mathbf{c} 2] \\ \mathbf{L v} \end{gathered}$	$\frac{{ }^{223]}}{\mathrm{Ts} s}$	

Titration method

1. Fill the \square with acid.
2. Use a \qquad to measure $25 \mathrm{~cm}^{3}$ of alkali into the conical flask.
3. Add an \qquad to the alkali.
4. Take the initial reading on the \square
5. Add the acid to the alkali while \square the conical flask.
6. Stop adding the acid when the indicator changes colour. Record the final reading on the burette - This is your rough titration.
7. Repeat the titration this time adding \qquad near the end point.
8. Repeat until \square results are achieved.

Processing titration results

	1	2	3	4
Final volume $\left(\mathrm{cm}^{3}\right)$	23.45	45.70	22.60	44.70
Initial volume $\left(\mathrm{cm}^{3}\right)$	0.00	23.45	0.00	22.40
Titre $\left(\mathrm{cm}^{3}\right)$				

Processing titration results

	1	2	3	4
Final volume $\left(\mathrm{cm}^{3}\right)$	23.45	45.70	22.60	44.70
Initial volume $\left(\mathrm{cm}^{3}\right)$	0.00	23.45	0.00	22.40
Titre $\left(\mathrm{cm}^{3}\right)$	23.45	22.25	22.60	22.30

Moles, concentration and volume

	A solution had a volume of $25 \mathrm{~cm}^{3}$ and a concentration of $0.125 \mathrm{~mol} / \mathrm{dm}^{3}$. Calculate the number of moles in this solution.	
Values		
Equation		
Substitute		
Rearrange		
Answer		

Moles, concentration and volume

	A solution had a volume of $50 \mathrm{~cm}^{3}$ and a concentration of $0.275 \mathrm{~mol} / \mathrm{dm}^{3}$. Calculate the number of moles in this solution.	
Values		
Equation		
Substitute		
Rearrange		
Answer		

Titration calculation

A student added $25 \mathrm{~cm}^{3}$ of an unknown concentration of sodium hydroxide into a conical flask. They carried out a titration using $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ of hydrochloric acid. The mean volume of hydrochloric acid needed to exactly neutralise the acid was $26.50 \mathrm{~cm}^{3}$. Calculate the concentration of the sodium hydroxide.
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Titration calculation

A student added $25 \mathrm{~cm}^{3}$ of $0.150 \mathrm{~mol} / \mathrm{dm}^{3}$ of sodium hydroxide into a conical flask. They carried out a titration using an unknown concentration of of citric acid. The results of the titration are shown below. Calculate the concentration of the citric acid.
$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}+3 \mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

	Titration 1	Titration 2	Titration 3	Titration 4	Titration 5
Volume of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$ added in cm^{3}	12.50	11.10	10.20	10.15	10.15

Independent task

A student titrated $25 \mathrm{~cm}^{3}$ of $0.075 \mathrm{~mol} / \mathrm{dm}^{3}$ of sulfuric acid with an unknown concentration of sodium hydroxide. The mean volume of sodium hydroxide added was $17.55 \mathrm{~cm}^{3}$. Calculate the concentration of the sodium hydroxide solution.
$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

1. Calculate moles of sulfuric acid using moles $=$ concentration x volume (remember to make sure your volume is in dm^{3})
2. Use the ratio from the balanced equation to work out moles of HCl
3. Calculate the concentration of HCl using concentration $=$ moles/volume (remember to make sure your volume is in dm^{3})

Independent task answer

$2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Moles $(\mathrm{NaOH})=$ concentration \times volume
$25 \mathrm{~cm}^{3}=0.025 \mathrm{dm}^{3}$
Moles $\mathrm{NaOH}=0.075 \times 0.025=1.875 \times 10^{-5}(0.00001875)$

Independent task answer

Ratio of $\mathrm{NaOH}: \mathrm{HCl}$ 2:1

So moles of $\mathrm{HCl}=1.875 \times 10^{-5} / 2=9.375 \times 10^{-6}$
Concentration $(\mathrm{HCl})=$ moles/volume
Volume of $\mathrm{HCl}=17.55 \mathrm{~cm}^{3}$ so $0.01755 \mathrm{dm}^{3}$
Concentration $=9.375 \times 10^{-6} / 0.01755=5.3 \times 10^{-4} \mathrm{~mol} / \mathrm{dm}^{3}$

Independent task

A student carried out a titration using $25 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} / \mathrm{dm}^{3} \mathrm{HCl} . \mathrm{NaOH}$ was end to the HCl and the volume needed to neutralise the HCl was recorded. Use the results of the titration to calculate the concentration of $\mathrm{NaOH} . \quad \mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

	Titration 1	Titration 2	Titration 3	Titration 4	Titration 5
Volume of NaOH added in cm	12.50	11.10	10.20	10.15	10.15

1. Calculate moles of HCl using moles $=$ concentration \times volume (remember to make sure your volume is in dm^{3})
2. Use the ratio from the balanced equation to work out moles of NaOH
3. Calculate the mean volume of NaOH using the concordant results from the titration.
4. Calculate the concentration of HCl using concentration $=$ moles/volume (remember to make sure your volume is in dm^{3})

Independent task answer

1. Moles $(\mathrm{HCl})=0.200 \times 0.025=5 \times 10^{-3}$
2. Ratio $\mathrm{HCl}: \mathrm{NaOH} 1: 1$ so moles of $\mathrm{NaOH}=5 \times 10^{-3}$
3. Mean volume of $\mathrm{NaOH}=10.15 \mathrm{~cm}^{3}$
4. Concentration of $\mathrm{NaOH}=5 \times 10^{-3} / 0.01015=0.493 \mathrm{~mol} / \mathrm{dm}^{-3}$
