Order of magnitude calculations

(Downloadable student document)

Measuring the width and length of cells.

Measuring width and length using micrometers

1 mm = $1000 \mu \mathrm{~m}$

To convert mm to $\mu \mathrm{m}$, you need to multiply the number by 1000.

To convert $\mu \mathrm{m}$ to mm , you need to divide the number by 1000.

Converting the units

The point to remember is $1 \mathrm{~mm}=1000 \mu \mathrm{~m}$.

$$
\begin{aligned}
& 1 \mathrm{~mm}=1000 \mu \mathrm{~m} \\
& 2 \mathrm{~mm}=\ldots \quad \mu \mathrm{m}
\end{aligned}
$$

$$
3.4 \mathrm{~mm}=\ldots \mu \mathrm{m}
$$

Converting the units

The point to remember is $1 \mathrm{~mm}=1000 \mu \mathrm{~m}$.

$$
\begin{aligned}
& 1 \mathrm{~mm}=1000 \mu \mathrm{~m} \\
& 2 \mathrm{~mm}=2000 \mu \mathrm{~m} \\
& 3.4 \mathrm{~mm}=3400
\end{aligned}
$$

To convert mm to $\mu \mathrm{m}$, you need to multiply the number by 1000.

Converting the units from $\mu \mathrm{m}$ to mm

$$
\begin{aligned}
& \mathrm{mm} \begin{array}{c}
\times 1000 \\
\div 1000
\end{array} \mu \mathrm{~m} \\
& 1 \mathrm{~mm}= 1000 \mu \mathrm{~m} \\
& \mathrm{~mm}=100 \mu \mathrm{~m} \\
& \mathrm{~mm}=50 \mu \mathrm{~m}
\end{aligned}
$$

Converting the units from $\mu \mathrm{m}$ to mm

$$
\begin{aligned}
& \mathrm{mm} \underset{\div 1000}{\stackrel{x}{4}} \mu \mathrm{~m} \\
& 1 \mathrm{~mm}=1000 \mu \mathrm{~m} \\
& \frac{0.1}{0.05} \mathrm{~mm}=100 \mu \mathrm{~m} \\
& \frac{\mathrm{~mm}}{\mathbf{0 . 0}}=50 \mu \mathrm{~m}
\end{aligned}
$$

Expressing large numbers.

Expressing numbers in standard form

We have learnt that $1 \mathrm{~mm}=1000 \mu \mathrm{~m}$.
So, $100 \mathrm{~mm}=\ldots \quad$?__ $\mu \mathrm{m}$

$$
100 \times 1000=100,000 \mu \mathrm{~m}
$$

We can express 100,000 $\mu \mathrm{m}$ in standard form.

$$
100,000 \mu \mathrm{~m}=1 \times 10^{5} \mu \mathrm{~m}
$$

Order of magnitude and standard form

$10=10^{1}$
$100=10 \times 10=10^{2}$
$1000=10 \times 10 \times 10=10^{3}$
$100,000 \mu \mathrm{~m}=10 \times 10 \times 10 \times 10 \times 10=10^{5} \mu \mathrm{~m}$

Order of magnitude and standard form

 Express $300,000 \mu \mathrm{~m}$ in standard form.Express $70,000 \mu \mathrm{~m}$ in standard form.

Order of magnitude and standard form

Express $300,000 \mu \mathrm{~m}$ in standard form.

$$
\begin{aligned}
& 300,000 \mu \mathrm{~m}=3 \times 100,000 \mu \mathrm{~m} \\
& =3 \times 10 \times 10 \times 10 \times 10 \times 10=3 \times 10^{5} \mu \mathrm{~m}
\end{aligned}
$$

Express 70,000 $\mu \mathrm{m}$ in standard form.

$$
\begin{aligned}
& 70,000 \mu \mathrm{~m}=7 \times 10,000 \mu \mathrm{~m} \\
& =7 \times 10 \times 10 \times 10 \times 10=7 \times 10^{4} \mu \mathrm{~m}
\end{aligned}
$$

Order of magnitude and standard form

Let's try these two questions together:

1. Express 35 mm in $\mu \mathrm{m}$. Make sure your answer is in standard form.
2. Express 90 mm in $\mu \mathrm{m}$. Make sure your answer is in standard form.

Order of magnitude and standard form

Let's try these two questions together:

1. Express 35 mm in $\mu \mathrm{m}$. Make sure your answer is in standard form. $35 \mathrm{~mm}=35 \times 1000 \mu \mathrm{~m}=35,000 \mu \mathrm{~m}$
$35,000 \mu \mathrm{~m}=3.5 \times 10,000=3.5 \times 10 \times 10 \times 10 \times 10=3.5 \times 10^{4} \mu \mathrm{~m}$
2. Express 90 mm in $\mu \mathrm{m}$. Make sure your answer is in standard form. $90 \mathrm{~mm}=90 \times 1000 \mu \mathrm{~m}=90,000 \mu \mathrm{~m}$ $90,000 \mu \mathrm{~m}=9 \times 10,000=9 \times 10 \times 10 \times 10 \times 10=9 \times 10^{4} \mu \mathrm{~m}$

Quick concept check:

Express the following in standard form

Answers to quick concept check:
Express the following in standard form

a) $1000 \mu \mathrm{~m}$	$1 \times 10^{3} \mu \mathrm{~m}$
b) $500,000 \mu \mathrm{~m}$	$5 \times 10^{5} \mu \mathrm{~m}$
b) $6 \mathrm{~mm}=\ldots ? _\mu \mathrm{m}$	$6 \times 10^{3} \mu \mathrm{~m}$
c)	
d) $0.5 \mathrm{~mm}=\ldots ? _\mu \mathrm{m}$	$5 \times 10^{2} \mu \mathrm{~m}$

Expressing small numbers using standard form

Using standard form to express

small numbers

There is a cell of $0.00001 \mu \mathrm{~m}$.
We can also express this in standard form.
$0.00001 \mu \mathrm{~m}=1 \times 10^{-5} \mu \mathrm{~m}$ UUUN

Using standard form to express small numbers

There is a cell of 0.0005 mm .
Express the above in standard form.

There is a cell of $0.007 \mu \mathrm{~m}$.
Express the above in standard form.

Using standard form to express

small numbers

There is a cell of 0.0005 mm .
Express the above in standard form.

$0.0005 \mathrm{~mm}=5 \times 10^{-4} \mathrm{~mm}$

There is a cell of $0.007 \mu \mathrm{~m}$.
Express the above in standard form.

$$
\underset{\substack{\text { UVU }}}{0.007} \mu \mathrm{~m}=7 \times 10^{-3} \mathrm{~mm}
$$

Independent practice

Express the following measurements in standard form.

1. $329,000 \mu \mathrm{~m}=\ldots \mu \mathrm{m}$
2. $0.0003 \mu \mathrm{~m}=\ldots \mu \mathrm{m}$
3. $0.0045 \mu \mathrm{~m}=\ldots \mu \mathrm{m}$
$4.9 .5 \mathrm{~mm}=\ldots \quad \mu \mathrm{m}$
4. $0.00007 \mathrm{~mm}=\ldots \mu \mathrm{m}$
5. $256,000 \mu \mathrm{~m}=\ldots \mathrm{mm}$
6. $0.00034 \mathrm{~mm}=\ldots \mu \mathrm{m}$
7. $183,000 \mu \mathrm{~m}=$ \qquad mm

Independent practice

Express the following measurements in standard form.

Answers:

1. $329,000 \mu \mathrm{~m}=\ldots \mu \mathrm{m}$
2. $0.0003 \mu \mathrm{~m}=\ldots \mu \mathrm{m}$
3. $0.0045 \mu \mathrm{~m}=$

4. $9.5 \mathrm{~mm}=$

5. $0.00007 \mathrm{~mm}=\ldots \mu \mathrm{m}$
6. $256,000 \mu \mathrm{~m}=$ \qquad mm
7. $0.00034 \mathrm{~mm}=$ \square $\mu \mathrm{m}$
8. $183,000 \mu \mathrm{~m}=$ \qquad mm
9. $3.29 \times 10^{5} \mu \mathrm{~m}$
10. $3 \times 10^{-4} \mu \mathrm{~m}$
11. $4.5 \times 10^{-3} \mathrm{\mu m}$
12. $9.5 \times 10^{3} \mu \mathrm{~m}$
13. $7 \times 10^{-2} \mu \mathrm{~m}$
14. $2.56 \times 10^{2} \mathrm{~mm}$
15. $3.4 \times 10^{-1} \mathrm{\mu m}$
16. $1.38 \times 10^{2} \mathrm{~mm}$
