Lesson 3a - Work Done

Physics-KS3

Forces in Action

Mrs Wolstenholme

Work Done

Work done is the amount of energy transferred when a force causes an object to move.

Work done and energy transferred are both measured in Joules (J)

Work Done

Exerts a force

Energy is transferred

Work is done

Pause the video to complete your task

Fill in the gaps

Work done is the amount of
___ transferred when a \qquad causes an object to move.

Work done and energy transferred are both measured in \qquad

Work Done	Force	\times
(J)	(N)	distance

Energy Transferred	$=$	Force
(J)	(N)	distance

Work Done or $=$ Force x distance
Energy Transferred
(J)
(N)
(m)

What is the work done when the box is pushed 5 m by a force of 60 N ?

Work Done $=$ Force \times Distance
Work Done $=60 \times 5$
Work Done = 300 J
What would the energy transferred be? $300 J$

Energy Transferred
(J)

See video for diagram
$=$ Force $x \quad$ distance
(N)

The climber climbs to the top of the cliff. She weighs 660 . Calculate the work done against gravity to climb to the top.

What is the unit of Work done?

Option 1
Metre (m)
Option 3
Newton (N)

Option 2

Joules (J)

Option 4

Centimetre (cm)

What is the unit of Energy transferred?

Option 1
Metre (m)
Option 3
Newton (N)

Option 2

Joules (J)

Option 4

Centimetre (cm)

What is the unit of distance we use in this equation?

Option 1
Metre (m)

Option 3
Newton (N)

Option 2
Joules (J)

Option 4
Centimetre (cm)

What is the unit of Force?

Option 1
Metre (m)
Option 3
Newton (N)

Option 2

Joules (J)

Option 4

Centimetre (cm)

Work Done or $=$ Force x distance
Energy Transferred
(J)
(N)
(m)

Your Turn:

A car is dragged 5.7 m over flat ground. It is pulled by a force of 360 N . a) What is the work done?
b) What is the energy transferred?

Work Done or $=$ Force x distance
Energy Transferred
(J)
(N)
(m)

500 J is transferred to the box when it is pushed 25 m . What is the force on the box while it is pushed?

Energy transferred $=$ Force \times distance

$$
\begin{aligned}
500 \div 25 & =\text { Force } \times 25 \div 25 \\
20 & =\text { Force } \\
\text { Force } & =20 \mathrm{~N}
\end{aligned}
$$

```
Work Done or = Force x distance
```

Energy Transferred
(J)
(N)
(m)

Your Turn:

A toy car is dragged for 10 m . The work done is 450 J . What is the force on the car?
Work Done $=$ Force \times distance

Work Done or $=$ Force x distance

Energy Transferred
(J)

See video for diagram

The climber has a weight of 650 N . The work done in climbing up the cliff is 1300 J . How far up the cliff has she climbed?

```
Work Done or = Force x distance
```

Energy Transferred
(J)
(N) (m)

Your turn: A man transfer 350 J of energy to the box. He exerts a force of 70 N on the box. How far has he pushed the box?

Work Done or $=$ Force x distance

Energy Transferred
(J)
(N)
(m)


```
Work Done or = Force x distance
Energy Transferred
(J)
(N)
(m)
30 cm \div100=0.3m
100 km x 1000 = 100 000 m
5 km x 1000 = 5 000 m
23 cm \div100=0.23 m
```

Work Done or
Energy Transferred
(J)
(N)
$\div 100$
$\mathrm{cm} \square \mathrm{m}$

Your turn:

50 cm
23 km
0.4 km

600 cm

A car is dragged over 470 cm on flat ground. It is pulled by a force of 250 N . What is the work done?

Distance $=470 \mathrm{~cm} \div 100=47 \mathrm{~m}$
Work Done = Force \times distance
Work Done $=250 \times 47$
Work Done = 11750 J

Work Done or	$=$	Force	\times
Energy Transferred	distance		
$\div 100$	(N)	(m)	

Your turn:
A trolley is pushed 230 cm with a resultant force of 50 N . Calculate the work done by the force.

Work Done or $=$ Force x distance
Energy Transferred
(J)
(N)
(m)

A car is trave 55 km od flat ground. The force from the $\mathrm{km} \stackrel{\mathrm{xl000}}{ } \mathrm{~m}$

Work Done or Energy Transferred (J)

See video for diagram
$=$ Force x distance
(N)
(m)
x1000
Your turn:
A climber climbs 0.15 km . The force exerted is 240 N . Calculate the work done.

On the next page there is a table.

Use the equation:
Work = Force \times Distance to fill it in.

A few have been completed for you. Remember to check your units!

		Force				
		12 N	Work = force x distance $3.85=$ Force $\times 0.35$ Force $=17 \mathrm{~N}$	120,000 N	Force = ?	8 N
Distance	35 cm	4.2 J	3.85 J	Work = ?	Work = ?	
	100m	Work done = force x distance $=12 x$ $100=1200 J$	Work =?	Work =?	37200 J	
	3.62 cm	Work = ?	Work = ?	$\begin{gathered} \text { Work }=\text { force } \mathrm{x} \\ \text { distance }= \\ 0.0362 \times \\ 120000=4344 \mathrm{~J} \end{gathered}$		
	1.87m	Work = ?	Work = ?			
	Distance =?	1.2 J	1.17			

AnSWerS	Force					
	12 N	Work $=$ force \times distance $3.85=$ Force 0.35 Force $=71 \mathrm{~N}$	$120,000 \mathrm{~N}$	372 N	8 N	
Distance	35 cm	4.2 J	3.85 J	42000 J	130.2 J	2.8 J
	100 m	Work done $=$ force \times distance $=12 \times$ $100=1200 \mathrm{~J}$	1100 J	12000000 J	37200 J	800 J
	3.62 cm	0.4344 J	0.3982	Work $=$ force \times distance $=$ $0.0362 \times$	13.5 J	0.2896 J

