Chemical reactions

Task 1: Physical and chemical changes

There are multiple stages to making cookies. For each stage, **identify** whether it is a physical or chemical change and **explain** why.

Stage 1: Mixing the chocolate chips into the dough.

Stage 2: Separating the dough into balls.

Stage 3: Baking cookies in the oven.

Task 2: Equations

a) Write the word equation and add the symbols to the symbol equations.

Reaction	Word equation	Symbol equation
Potassium reacts with oxygen to make potassium oxide.		$4 \underline{\qquad} + O_2 \rightarrow 2 \text{ K}_2 \text{O}$
Sodium reacts with fluorine to make sodium fluoride.		Na + → NaF
Carbon reacts with oxygen to produce carbon dioxide.		$C + O_2 \rightarrow \underline{\qquad}$
Calcium reacts with chlorine to make calcium chloride.		$\underline{\qquad} + \operatorname{Cl}_2 \to \operatorname{CaCl}_2$

b) Write the word equation and balance the symbol equations.

Reaction	Word equation	Symbol equation
Beryllium reacts with oxygen to produce beryllium oxide.		$_$ Be + O ₂ \rightarrow 2 BeO
Hydrogen and bromine produce hydrogen bromide.		$Br_2 + H_2 \rightarrow \HBr$
Iron reacts with oxygen to make iron oxide.		$\underline{\qquad} Fe + 3 O_2 \rightarrow 2 Fe_2O_3$
Gallium reacts with sulfur to produce gallium sulfide.		$\underline{\qquad} Ga + \underline{\qquad} S \rightarrow Ga_2S_3$

Task 3: Displacement reactions

- a) **Complete** the word equations for these displacement reactions.
- i) calcium _____ + lithium \rightarrow lithium chloride + calcium
- ii) sodium chloride + fluorine \rightarrow sodium fluoride + _____
- iii) iron oxide + aluminium \rightarrow aluminium _____ + iron
- iii) silver _____ + copper \rightarrow copper nitrate + silver

b) When zinc Zn is added to Copper nitrate $Cu(NO_3)_2$, zinc displaces lead to make zinc nitrate $Zn(NO_3)_2$ and copper Cu.

- i) Write the **word equation** for this reaction.
- ii) **Complete** the symbol equation for this reaction.

 $Zn + Cu(NO_3)_2 \rightarrow$

 (\black)

Task 4: Decomposition reactions

a) **Complete** the word equations for these decomposition reactions.

i) beryllium carbonate \rightarrow _____ oxide + carbon dioxide

ii) calcium carbonate \rightarrow calcium oxide + _____

- iii) iron oxide \rightarrow _____ + oxygen
- b) **Complete** the symbol equations for these decomposition reactions.
- i) $ZnCl_2 \rightarrow Zn +$

ii) 2 $\operatorname{Fe_2O_3} \rightarrow 4$ ______ + 3 $\operatorname{O_2}$

c) **Identify** if the following word equations represent displacement reactions or decomposition reactions.

Reaction equation			Displacement reaction	Decomposition reaction
calcium + lithium bromide	\rightarrow	lithium + calcium bromide		
zinc carbonate	\rightarrow	zinc + carbon oxide dioxide		
aluminium oxide	\rightarrow	aluminium + oxygen		
sodium + fluorine chloride	\rightarrow	sodium + chlorine fluoride		

d) **Identify** if the following symbol equations represent displacement reactions or decomposition reactions.

Reaction equ	ation		Displacement reaction	Decomposition reaction
2 AgBr	\rightarrow	2 Ag + Br ₂		
K + AgNO ₃	\rightarrow	KNO ₃ + Ag		
CaCl ₂ + Sr	\rightarrow	SrCl ₂ + Ca		
2 H ₂ O ₂	\rightarrow	2 H ₂ O + O ₂		

Task 1: Physical and chemical changes

There are multiple stages to making cookies.

For each stage, **identify** whether it is a physical or chemical change and **explain** why.

Stage 1: Mixing the chocolate chips into the dough.

physical

- Chips would be easy to separate again.
- No new products (still dough and chocolate chips).
- No fizzing, colour change, temperature change, sound or smell.

Stage 2: Separating the dough into balls.

physical

- Chips would be easy to separate again.
- No new products (still dough and chocolate chips).
- No fizzing, colour change, temperature change, sound or smell.

Stage 3: Baking cookies in the oven.

Dia	JA

chemical

- New product formed baked cookies.
- Would be difficult to return back to what you started with.
- Colour change, smell produced, and bubbling.

Task 2: Equations

a) Write the word equation and add the symbols to the symbol equations.

Reaction	Word equation	Symbol equation
Potassium reacts with oxygen to make potassium oxide.	potassium + oxygen → potassium oxide	$4 \underline{K} + O_2 \rightarrow 2 K_2 O$
Sodium reacts with fluorine to make sodium fluoride.	sodium + fluorine → sodium fluoride	Na + <u>F</u> → NaF
Carbon reacts with oxygen to produce carbon dioxide.	carbon + oxygen → carbon dioxide	$C + O_2 \rightarrow \underline{CO_2}$
Calcium reacts with chlorine to make calcium chloride.	calcium + chlorine → calcium chloride	<u>Ca</u> + Cl ₂ → CaCl ₂

b) Write the word equation and balance the symbol equations.

Reaction	Word equation	Symbol equation
Beryllium reacts with oxygen to produce beryllium oxide.	beryllium + oxygen → beryllium oxide	_2_ Be + $O_2 \rightarrow 2$ BeO
Hydrogen and bromine produce hydrogen bromide.	hydrogen + bromine → hydrogen bromide	$Br_2 + H_2 \rightarrow \underline{2} HBr$
Iron reacts with oxygen to make iron oxide.	iron + oxygen \rightarrow iron oxide	$_4$ Fe + 3 O ₂ → 2 Fe ₂ O ₃
Gallium reacts with sulfur to produce gallium sulfide.	gallium + sulfur \rightarrow gallium sulfide	$\underline{2} \operatorname{Ga} + \underline{3} \operatorname{S} \to \operatorname{Ga}_2 \operatorname{S}_3$

Task 3: Displacement reactions

a) **Complete** the word equations for these displacement reactions.

i) calcium $\underline{chloride}$ + lithium \rightarrow lithium chloride + calcium

ii) sodium chloride + fluorine \rightarrow sodium fluoride + <u>chlorine</u>

iii) iron oxide + aluminium \rightarrow aluminium <u>oxide</u> + iron

iii) silver <u>*nitrate*</u> + copper \rightarrow copper nitrate + silver

b) When zinc Zn is added to Copper nitrate $Cu(NO_3)_2$, zinc displaces lead to make zinc nitrate $Zn(NO_3)_2$ and copper Cu.

i) Write the **word equation** for this reaction.

zinc + copper nitrate \rightarrow zinc nitrate + copper

ii) **Complete** the symbol equation for this reaction.

 $Zn + Cu(NO_3)_2 \rightarrow Zn(NO_3)_2 + Cu$

Task 4: Decomposition reactions

a) **Complete** the word equations for these decomposition reactions.

- i) beryllium carbonate \rightarrow <u>beryllium</u> oxide + carbon dioxide
- ii) calcium carbonate \rightarrow calcium oxide + <u>carbon dioxide</u>
- iii) iron oxide \rightarrow *iron* + oxygen
- b) **Complete** the symbol equations for these decomposition reactions.
- i) $ZnCl_2 \rightarrow Zn + \underline{Cl_2}$
- ii) $2 \operatorname{Fe}_2 \operatorname{O}_3 \rightarrow 4 \underline{Fe} + 3 \operatorname{O}_2$

c) **Identify** if the following word equations represent displacement reactions or decomposition reactions.

Reaction equation		Displacement reaction	Decomposition reaction	
calcium + lithium bromide	\rightarrow	lithium + calcium bromide	~	
zinc carbonate	\rightarrow	zinc + carbon oxide dioxide		~
aluminium oxide	\rightarrow	aluminium + oxygen		~
sodium + fluorine chloride	\rightarrow	sodium + chlorine fluoride	~	

d) **Identify** if the following symbol equations represent displacement reactions or decomposition reactions.

Reaction equation		Displacement reaction	Decomposition reaction	
2 AgBr	\rightarrow	2 Ag + Br ₂		v
K + AgNO ₃	\rightarrow	KNO ₃ + Ag	~	
CaCl ₂ + Sr	\rightarrow	SrCl ₂ + Ca	<i>v</i>	
2 H ₂ O ₂	\rightarrow	2 H ₂ O + O ₂		~