
1

Lesson 2: Playlist

Python Programming with Sequences of Data

Computing

Rebecca Franks

 Materials from the Teach Computing Curriculum created by the National Centre for Computing Education

2

The solar system

2

 Operations on lists .

3

Add and remove items

list.append(item)
e.g. numbers.append(42)

Add an item to the end of the list.

list.insert(index, item)
e.g. cities.insert(2, "Oslo")

Insert an item at a given position.

list.pop(index)
e.g. last = values.pop()

Remove the item at the given position
in the list, and return it. If no index is
specified, remove and return the last
item in the list.

list.remove(item)
e.g. countries.remove("Japan")

Remove the first item from the list with
a particular value. Raises a ValueError
if there is no such item.

 Operations on lists .

4

Find and count items

list.index(item)
e.g. pos = planets.index("Mars")

Search for the first occurrence of an
item in the list and return its
(zero-based) index. Raises a
ValueError if there is no such item.

list.count(item)
e.g. nb_the = words.count("the")

Return the number of times an item
appears in the list.

 Operations on lists .

5

Modify list

list.reverse()
e.g. values.reverse()

Reverse the items of the list.

list.sort()
e.g. names.sort()
e.g. numbers.sort(reverse=True)

Sort the items of the list.
Use the reverse=True argument to
sort in descending order.

 Worked Example .Third rock from the sun

6

This program searches for the index of Earth in the list of planets.

Here are the contents of the planets list, with an index next to each item:

1
2
3
4
5
6

planets = ["Mercury", "Venus",
 "Earth", "Mars",
 "Jupiter", "Saturn",
 "Uranus", "Neptune"]
position = planets.index("Earth") + 1
print("Earth is planet number", position)

0 1 2 3 4 5 6 7

"Mercury" "Venus" "Earth" "Mars" "Jupiter" "Saturn" "Uranus" "Neptune"

 Task 1 .Planets

7

Mercury, Venus, Mars, Jupiter, and Saturn are visible from Earth. These planets have been
known since antiquity.

By 1930, astronomers had added Uranus (1781), Neptune (1846), and Pluto (1930) to the list of
known planets.

A score of discoveries in the early 2000s led to the demotion of Pluto; since 2006 it is no
longer considered a planet and is classified instead as a dwarf planet.

In this task, you will create a program that recounts this short story about our view of the
planets in our solar system.

 Task 1 .Planets

8

Step 1

Open this incomplete program oaknat.uk/comp-py-solar-1 in Repl.it:

1
2
3
4
5
6
7
8
9

10
11
12
13

planets = ["Mercury", "Venus",
 "Earth", "Mars",
 "Jupiter", "Saturn"]
print("Planets in antiquity:")
print(planets)
 # Add Uranus to the list
 # Add Neptune to the list
 # Add Pluto to the list
print("Planets by 1930:")
print(planets)
 # Remove Pluto from the list
print("Planets after 2006:")
print(planets)

 Challenge .Steps 2 to 5

9

Step 2

Complete line 6, so that "Uranus" is added to the end of the list of planets.

Tip: Consult the ‘Operations on lists’ section at the beginning of this worksheet to find out
how to add an item to the end of a list.

Step 3

Run the program to make sure that Uranus is included in the list of planets “known by
1930”.Example
Note: Use this example to check your program.
This should be part of the program’s
output: check that the items and their
order are correct.

Planets by 1930:
['Mercury', 'Venus', 'Earth', 'Mars',
'Jupiter', 'Saturn', 'Uranus']

 Challenge .Steps 2 to 5

10

Step 4

Complete line 7 and 8, so that "Neptune" and "Pluto"are also added to the end of the list of
planets.

Step 5

Run the program, to make sure that Neptune and Pluto are included in the list of planets
“known by 1930”.

Example
Note: Use this example to check your program.
This should be part of the program’s
output: check that the items and their
order are correct.

Planets by 1930:
['Mercury', 'Venus', 'Earth', 'Mars',
'Jupiter', 'Saturn', 'Uranus',
'Neptune', 'Pluto']

 Challenge .Steps 6 to 7

11

Step 6

Complete line 11, so that "Pluto" is removed from the list of planets.

Tip: Consult the ‘Operations on lists’ section at the beginning of this worksheet to find out
how to remove an item from a list.

Step 7

Run the program, to make sure that Pluto is not included in the list of planets “after 2006”.

Example
Note: Use this example to check your program.
This should be part of the program’s
output: check that the items and their
order are correct.

Planets after 2006:
['Mercury', 'Venus', 'Earth', 'Mars',
'Jupiter', 'Saturn', 'Uranus',
'Neptune']

 Task 2 .Dwarf planets

12

In 2006, astronomers set out rules that would classify certain objects in the solar system as
dwarf planets. At present there are five such objects (but this list is subject to change): Ceres,
Pluto, Haumea, Eris, and Makemake, ordered according to their date of discovery.

There was controversy around which team the discovery of Haumea should be attributed to.
The name originally proposed for it was Ataecina.

In this task, you will complete a program that displays the list of dwarf planets.

 Task 2 .Dwarf planets

13

Step 1

Open this incomplete program oaknat.uk/comp-py-solar-2 in Repl.it:

1
2
3
4
5

dwarves = # Create list of dwarves
 # Change 2nd item to Haumea
 # Add Pluto as 2nd item
print("Dwarf planets:")
print(dwarves)

 Challenge .Steps 2 and 3

14

Step 2

Complete line 1, so that the list of dwarf planets comprises Ceres, Ataecina, Eris, and
Makemake, in that order.

Tip: Check how the list of planets is created in the first task.

Step 3

Run the program to make sure that the list of dwarf planets is correct.

Example
Note: Use this example to check your program.
This should be part of the program’s
output: check that the items and their
order are correct.

Dwarf planets:
['Ceres', 'Ataecina', 'Eris',
'Makemake']

Step 4

Complete line 2, so that the second item in the list is assigned the value of "Haumea".

Tip: You will need to assign the new value to the second item of the dwarves list.

Tip: Item numbering starts from 0, so the second item has an index of 1.

Step 5

Run the program to make sure that the second item in the list is Haumea, instead of
Ataecina.

 Challenge .Steps 4 and 5

15

Example
Note: Use this example to check your program.
This should be part of the program’s
output: check that the items and their
order are correct.

Dwarf planets:
['Ceres', 'Haumea', 'Eris', 'Makemake']

 Challenge .Steps 6 and 7

16

Step 6

Complete line 3, so that "Pluto" is added to the list, as its second item.

Tip: Item numbering starts from 0, so the second item has an index of 1.

Step 7

Run the program to make sure that Pluto is now the second item in the list, preceded by
Ceres and followed by Haumea, Eris, and Makemake, in that order.

Example
Note: Use this example to check your program.
This should be part of the
program’s output: check that the
items and their order are correct.

Dwarf planets:
['Ceres', 'Pluto', 'Haumea', 'Eris',
'Makemake']

Dice battle game

17

 Dice battle .Introduction

18

In this activity, you will develop a two-player dice game. One player is the attacker and the
other is the defender.

Roll The attacker rolls three dice. The defender rolls two dice.

Sort Each player’s dice are sorted in descending order (highest first).

Check The attacker’s highest roll is compared to the defender’s highest roll. The player with
the smallest roll loses a point. If the two rolls are equal, the attacker loses the point.

Check Then, the attacker’s second highest roll is compared to the defender’s second
highest roll. The player with the smallest of the two loses a point. If the two rolls are equal,
the attacker loses the point.

 Example 1 .

19

 Example 2

20

 Task .

21

Step 1 - Open this incomplete program oaknat.uk/comp-py-battle-1 in Repl.it:

 Task .

22

Step 2

Run the program 2-3 times, to see how different lists of dice rolls are generated each time.
The lists will not be sorted yet.

Step 3

Complete line 9 so that the attacker list, containing the attacker’s dice rolls, is sorted.

Note: There are a couple of alternative ways to achieve this. For one of them, you may even
need an additional line of code.

Make sure you run the program and check that the attacker’s list of dice rolls is now indeed
sorted.

 Task .

23

Step 4

Complete line 10 so that the defender list, containing the defender’s dice rolls, is also sorted.

Make sure you run the program and check that the defender’s list of dice rolls is now indeed
sorted. Example

Note: This example illustrates how your program should work. The actual output of
your program is generated randomly, so the numbers will be different every time
you execute it.
The program displays the items of
the attacker and defender lists,
containing their respective dice rolls.

Players’ rolls
Attacker: [3, 2, 5]
Defender: [2, 5]

The program displays the items of
the attacker and defender lists
again, after they have been sorted.

Sorted
Attacker: [5, 3, 2]
Defender: [5, 2]

 Task .

25

Step 5
Add an if-statement to your program that compares the highest dice roll in the attacker
list to the highest dice roll in the defender list.

If the attacker wins, decrease defender_points by 1. Otherwise, decrease attacker_points
by 1. Remember that if the highest rolls are equal, the defender wins.

Tip: Since the attacker and defender lists have been sorted, you know exactly which item
in each list holds the highest dice roll.

Step 6
Add another if-statement to your program that compares the second highest dice roll in
the attacker list to the second highest dice roll in the defender list.

If the attacker wins, decrease defender_points by 1. Otherwise, decrease
attacker_points by 1. Remember that if the highest rolls are equal, the defender wins.

 Task .

25

Step 7

Add these lines at the end of your program to display how the players’ points have been
modified after the game.

Make sure you run the program and check that the points displayed are consistent with the
dice rolls.

Example inputs and outputs can be seen on the next slide.

+
+
print("Attacker points:", attacker_points)
print("Defender points:", defender_points)

 Task .

25

Example
Note: This example illustrates how your program should work. The actual output of your
program is generated randomly, so the numbers will be different every time you execute it.
The program displays the items of the
attacker and defender lists, containing their
respective dice rolls.

Players’ rolls
Attacker: [3, 2, 5]
Defender: [2, 5]

The program displays the items of the
attacker and defender lists again, after they
have been sorted.

Sorted
Attacker: [5, 3, 2]
Defender: [5, 2]

The program displays each player’s points after
the game.

Attacker points: -1
Defender points: -1

 Explorer Task (optional).

27

Extend your program so that the attacker and defender start with an initial,
positive number of points. The game is repeated for multiple rounds, for as long
as both players have a positive number of points.

When the game ends, your program should check which of the two players still
has some points remaining and declare them as the winner.

