
Lesson 1: Subroutines

Programming Part 4: Subroutines

Computing

Ben Garside

 Materials from the Teach Computing Curriculum created by the National Centre for Computing Education11

Task 1 - Subroutines

2

Subroutines worked example

1
2
3
4
5
6
7
8
9
10

def calculate(a, b):
 answer = a + b
 print(f"{a} + {b} = {answer}")

print("Enter a number:")
num1 = int(input())
print("Enter another number:")
num2 = int(input())

calculate(num1, num2)

Task 1.1 - The average number - 1
Open a new Repl.it file or create a new Python file on your device

Step 1:

Define a subroutine called average_value. The average_value subroutine should accept 3
parameters, a, b and c.

Step 2:

The purpose of the average_value subroutine is to calculate the average of 3 numbers and
output them for the user.

Create a variable called average and assign to it an expression that will calculate the average
of the 3 values passed through the parameters.

Tip: To calculate the average you must first add the three numbers together and then divide
that by 3.

3

Task 1.1 - The average number - 2
Step 3:

After the average has been calculated, the program should display the output:

The average value is {average}

Step 4:

Test your subroutine by calling it. You can call your subroutine by adding the line
average_value(6,8,10) to the end of your program.

If your program is working correctly then it should display the following when it is executed:

The average value is 8.0

4

Task 1.1 - The average number - 3
Step 5:

Delete the testing line of code.

Create 3 user prompts that will ask for the 3 numbers. The answers should be held in 3
variables: num1, num2 and num3.

Step 6:

Create a subroutine call that will pass the arguments num1, num2,num3 to the
average_value subroutine.

5

Task 1.1 - The average number - 4
Step 7:

Test your program. Use the table below to make sure that your program is working correctly.

6

Example: (✔ if it was successful)

Note: Use this example to check your program. This is the output your program should produce for the given input. ✔

The user is given a prompt Enter an number:

The user enters their reply and it is held in a variable. 4

The user is given another prompt Enter another number:

The user enters their reply and it is held in a variable. 8

The user is given another prompt Enter another number:

The user enters their reply and it is held in a variable. 10

The three variables are passed as arguments to the
subroutine. The subroutine calculates the average value and
the value is displayed.

The average value is 7.333333333333333

Task 1.2 - The highest number - 1
Step 1:

Define a subroutine called highest. The highest subroutine should accept 2 parameters, a
and b.

Tip: use the worked example on slide 2 to help you structure your subroutine.

Step 2:

The purpose of the highest subroutine is to output the highest number passed into it.

Create an if-else statement with a condition to check if one value is higher than the
other.

The highest value should be held in a variable called highest_num.

Tip: Look at previous programs that you have created where one value has been compared
with another.
7

Task 1.2 - The highest number - 2
Step 3:

Create a print statement that will output The highest number entered is {highest_num}
directly after the if-else statement.

Step 4:

Test your subroutine. In order to test your subroutine you will need to call it. You can call your
subroutine by adding the line highest(8,2) to the end of your program.

If your program is working correctly then it should display the following when it is executed:

The highest number entered is 8

Tip: Check your indents. The subroutine call should be all the way to the left.

Tip: If your program was unsuccessful then you should refer to the worked example and
other programs that you have used to compare one value with another.
8

Task 1.2 - The highest number - 3
Step 5:

Delete the testing line of code highest(8,2)

Create a user prompt that will ask for a number. The response should then be held in a
variable called num1.

Create another user prompt that will ask for another number. The response should then be
held in a variable called num2.

Tip: see the worked example on slide 2 for help with this step.

9

Task 1.2 - The highest number - 4
Step 6:

Create a subroutine call that will pass the arguments num1 and num2 to the highest
subroutine.

Tip: use the subroutine call from step 4 as a guide for this.

10

Task 1.2 - The highest number - 5
Step 7:

Test your program. Use the table below to make sure that your program is working correctly.

11

Example: (✔ if it was successful)

Note: Use this example to check your program. This is the output your program should produce for the given input. ✔

The user is given a prompt Enter an number:

The user enters their reply and it is held in a variable. 4

The user is given another prompt Enter another number:

The user enters their reply and it is held in a variable. 8

The two variables are passed as arguments to the subroutine. The
subroutine checks for the highest value. The highest value is displayed.

The highest number entered is 8

Task 2 - Calculation checker
Worked example

12

1
2
3
4
5
6
7
8
9
10

def calculate(a, b):
 answer = a + b
 print(f"{a} + {b} = {answer}")

print("Enter a number:")
num1 = int(input())
print("Enter another number:")
num2 = int(input())

calculate(num1, num2)

Task 2 - Calculation checker
Scenario:

A teacher would like you to create a program that will help learners check their answers to a
maths quiz that they have been given. Each question involves 2 numbers. The 2 numbers
could be used for addition, subtraction, multiplication or division. Here are some questions
that the learners were given:

1 + 3 = ?

8 x 2 = ?

3 - 1 = ?

8 ÷ 2 = ?

13

The program will need to:

● Ask for 2 numbers
● Ask if they wish to add, subtract, multiply or

divide
● Provide the correct answer e.g. 1 + 3 = 4

Note: At this stage, the program only needs to work
for 1 calculation.

Task 2 - Decompose the problem

Step 1:

Think about the subroutines that could be created for this program. Make a list of them below:

14

Task 2 - Decompose the problem

Step 2:

Think about the other parts of the program. What programming techniques will be required
to input the numbers? How will the program make decisions about which subroutine to call?

Write down your thinking in the space provided below:

15

Task 2 - Calculation checker - 1

Step 3:

Design the algorithm for this program below using pseudocode
(oaknat.uk/comp-ks4-pseudocode).

16

Task 2 - Calculation checker - 2

Step 4:

Create the program based on the pseudocode that you have designed. Here is some sample
output to help you test your program.

17

Example: (✔ if it was successful)
Note: Use this example to check your program. This is the output your program should produce for the given input. ✔

The user is given a prompt Enter a number:

The user types in a number 10

The user is given a prompt Enter another number:

The user types in a number 6

The user is given a prompt Would you like to +, -, / or * ?

The user enters a response *

The program checks the condition and calls the
multiply subroutine. It multiplies the two values
given and displays a message.

10 * 6 = 60

