Growth and Decay. Downloadable Resource - Exponential Growth.

Mr. Thomas

Try this

Starting with 1 bacterium, how many would there be after 1 hour, if the bacterium increases by:

1) 100% every hour?
2) 50% every half hour?
3) 33.3% every third of an hour?
4) 25% every quarter of an hour?
... Keep going with this pattern. What do you notice?

Independent Task

1 Using integer x values from 1-9, find values of y when

$$
y=\left(1+\frac{1}{x}\right)^{x}
$$

How can you organise your answers in a table?

What happens if you try to find the value when $x=0$?

Sketch the results of your table on a graph.
(2) With a calculator, find the following:
1.07^{100}
1.007^{1000}
1.0007^{10000}
1.00001^{100000}
Continue this until the answer is 2.718282 to 7 significant figures.

Explore

Repeat the try this task with these numbers.
Can you spot a pattern? (It's quite hard to spot)
What would come next?

Starting with 1 bacterium, how many would there be after 1 hour, if the bacterium increases by:

200\% every hour?
100\% every half hour?
66.6ं\% every third of an hour?
50% every quarter of an hour?

Starting with 1 bacterium, how many would there be after 1 hour, if the bacterium increases by:

300\% every hour?
150\% every half hour?
100\% every third of an hour?
75% every quarter of an hour?

Starting with 4 bacteria, how many would there be after 1 hour, if the bacterium increases by:

400\% every hour?
200\% every half hour?
133.3 \% every third of an hour?

100\% every quarter of an hour?

