Prove that Two Vectors are Colinear

Mr Bond

Please note this downloadable resource contains some colored font

Which of pair of statements are true.
a) Collinear vectors are always parallel. Parallel vectors are always collinear.
b) Collinear vectors are sometimes parallel. Parallel vectors are always collinear.
c) Collinear vectors are sometimes parallel. Parallel vectors are sometimes collinear.
d) Collinear vectors are always parallel. Parallel vectors are sometimes collinear.

Prove that two vectors are colinear

1. Here are two vectors, \boldsymbol{a} and \boldsymbol{b}.

$$
\overrightarrow{X Y}=\boldsymbol{a}+2 \boldsymbol{b} \quad \overrightarrow{X Z}=2 \boldsymbol{a}+4 \boldsymbol{b}
$$

Show that $\overrightarrow{X Y}$ and $\overrightarrow{X Z}$ are colinear.
2. $A B C D$ is a parallelogram. P and Q are the midpoints of $C D$ and $B C$ respectively. N is the point such that $A B: B N$ is $2: 1$

Show that P, Q and N are colinear.

Prove that two vectors are colinear

3. $A B C D$ is a trapezium.
E is the midpoint of $A C$.
$A N: A B=3: 1$
Show that D, F and N are collinear.

Answers

Prove that two vectors are colinear

1. Here are two vectors, \boldsymbol{a} and \boldsymbol{b}.

$$
\overrightarrow{X Y}=\boldsymbol{a}+2 \boldsymbol{b} \quad \overrightarrow{X Z}=2 \boldsymbol{a}+4 \boldsymbol{b}
$$

Show that $\overrightarrow{X Y}$ and $\overrightarrow{X Z}$ are colinear. X, Y and Z lie on the same straight line so the vectors are colinear.
2. $A B C D$ is a parallelogram. P and Q are the midpoints of $C D$ and $B C$ respectively. N is the point such that $A B: B N$ is $2: 1$

Show that P, Q and N are colinear.
PQ and QN are parallel through a
common point so P, Q and N are colinear.

Prove that two vectors are colinear

3. $A B C D$ is a trapezium.
E is the midpoint of $A C$.
$A N: A B=3: 1$
Show that D, F and N are colinear.

$$
\overrightarrow{D E}=2 \boldsymbol{p}+\frac{1}{2} \overrightarrow{A C}=2 \boldsymbol{p}+\frac{1}{2}(3 q-2 p)=p+\frac{3}{2} q
$$

$$
\overrightarrow{D N}=2 \boldsymbol{p}+3 \boldsymbol{q}
$$

$\overrightarrow{D N}=2 \times \overrightarrow{D E}$ therefore $\overrightarrow{D N}$ and $\overrightarrow{D E}$ are parallel.
$\overrightarrow{D E}$ and $\overrightarrow{D N}$ are parallel through a common point therefore they are colinear.

