Combined Science - Physics - Key Stage 4 - Electricity

Series Circuits

Miss Walrond

Current in series circuits

1) Draw the circuit to the right.
2) If the current through ammeter 2 is 1.8 A, predict the current through ammeter 1 and ammeter 3.

Potential difference in series circuits

1) Draw the circuit to the right.
2) If the potential difference across voltmeter is 2 V and the potential difference across voltmeter 2 is 4 V , what must be the potential difference across the middle resistor?

Resistance in series circuits

1) Draw the circuit to the right.
2) If the total resistance is 20Ω what is the resistance of the second resistor?
3) If the cell voltage is 6 V and the current is 0.3 A, show that the total resistance is 20Ω.

Independent practice

Calculate the potential difference across the lamp, and calculate the resistance of the lamp in both of these circuits.
1)

Images, Miss Walrond

Independent practice

Calculate:
a) The potential difference across the resistor
b) The current through the resistor
c) The current through the lamp
d) The resistance of the lamp
e) The total circuit resistance

Answers

Review: Current in series circuits

1)

2) If the current in ammeter 2 is 1.8 A , then the current in ammeter 1 will be 1.8 A and the current in ammeter 3 will be 1.8 A.

Review: Potential difference in series circuits

1)

2) $\mathbf{V}=\mathbf{3} \mathbf{V}$
If $\mathrm{V}_{1}=2 \mathrm{~V}$ and $\mathrm{V}_{2}=4 \mathrm{~V}$ then:
$9=2+V+4$,
so $\mathbf{V}=9-2-4=\mathbf{3} \mathbf{V}$

Review: Resistance in series circuits

1)

2) $\mathbf{R}=\mathbf{1 5} \boldsymbol{\Omega}$

If the total resistance is $20 \boldsymbol{\Omega}$. Then: $20=5+\mathrm{R}$, so $\mathbf{R}=20-5=15 \Omega$
3) Total potential difference $=$ total current \times total resistance

$$
\begin{aligned}
& 6=0.3 \times \mathrm{R} \\
& \mathrm{R}=6 / 0.3=20 \Omega
\end{aligned}
$$

Review: Independent practice

Calculate the potential difference across the lamp, and calculate the resistance of the lamp.
1)

1) $V=2 V, R=1 \square$
2) $V=1.5 \mathrm{~V}, \mathrm{R}=15$

Review: Independent practice

Calculate:
a) The potential difference across the resistor 5.5 V
b) The current through the resistor 1.375 A
c) The current through the lamp 1.375 A
d) The resistance of the lamp 0.36Ω
e) The total circuit resistance 4.36Ω

