
Combined Science - Chemistry - Key Stage 4

Making Salts

Mr Campbell

Periodic Table of Elements

Source: Oak

						4 He helium 2
	11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9	20 Ne neon 10
	27 Al aluminium 13	28 Si silicon 14	31 P phosphorus 15	32 S sulfur 16	35.5 Cl chlorine 17	40 Ar argon 18
ו	70 Ga gallium 31	73 Ge germanium 32	75 As arsenic 33	79 Se selenium 34	80 Br bromine 35	84 Kr krypton 36
d um	115 In indium 49	119 Sn 50	122 Sb antimony 51	128 Te tellurium 52	127 I iodine 53	131 Xe xenon 54
J Iry	204 TI thallium 81	207 Pb lead 82	209 Bi bismuth 83	[209] Po polonium 84	[210] At astatine 85	[222] Rn radon 86
5] 1 :ium	[286] Nh nihonium 113	[289] FI flerovium 114	[289] Mc moscovium 115	[293] LV livermorium 116	[293] TS tennessine 117	[294] Og organesson 118

A student wanted to make copper chloride crystals, they reacted solid copper carbonate and hydrochloric acid. Sequence the steps below into the correct order.

A Filter to remove the unreacted copper carbonate.

D Add copper carbonate until it is excess, solid copper carbonate will remain. B Add copper carbonate to hydrochloric acid, stirring after each addition.

E When about two thirds of the solution has evaporated, place the evaporating dish in a drying oven. C Heat gently to evaporate the water from the copper chloride solution.

F Pour the filtrate into an evaporating basin.

A student wanted to make copper chloride crystals, they reacted solid copper carbonate and hydrochloric acid. Sequence the steps below into the correct order.

B Add copper carbonate to hydrochloric acid, stirring after each addition.

F Pour the filtrate into an evaporating basin.

D Add copper carbonate until it is excess, solid copper carbonate will remain.

C Heat gently to evaporate the water from the copper chloride solution. A Filter to remove the unreacted copper carbonate.

E When about two thirds of the solution has evaporated, place the evaporating dish in a drying oven.

A student wanted to make magnesium nitrate crystals, they reacted solid magnesium oxide and nitric acid. order.

Step in method	Why is it dor
The magnesium oxide is added in excess.	This is to ma has reacted.
The mixture of solid magnesium oxide and magnesium nitrate solution is filtered.	This separate the
The magnesium nitrate solution is heated (crystallisation).	This causes t leaving the _
The magnesium nitrate solution is heated gently.	This prevents

done?						
make sure all the						
arates thefrom						
ses the to evaporate he crystals.						
rents the crystals from						

Why is it do
This is to ma reacted.
This separat from the ma solution.
This causes ⁻ leaving the r crystals.
This prevent breaking do

ne?

ake sure all the acid has

tes the magnesium oxide agnesium nitrate

the water to evaporate magnesium nitrate

ts the crystals from own.

A student plans to make a pure dry sample of copper nitrate crystals. The student's plans the method below:

Add a small amount of potassium carbonate to dilute hydrochloric acid in a beaker.

2. < Stir until all the potassium carbonate disappears, then heat the solution with a Bunsen burner until all the liquid is gone

This method contains a number of errors and **will not** produce copper nitrate crystals. Identify and explain the errors and give the improvements that would allow the student to make crystals of copper nitrate.

A student plans to make a pure dry sample of copper nitrate crystals. The student's plans the method below:

- Add a small amount of potassium carbonate to dilute hydrochloric acid in a beaker.
 - Stir until all the potassium carbonate disappears, then heat the 2. solution with a Bunsen burner until all the liquid is gone
- Error = Used potassium carbonate
- Why it's an error? =This will produce a potassium salt not copper

Improvement = Use copper carbonate or copper oxide

Error = Used potassium carbonate Why it's an error? = This will produce a potassium salt not copper Improvement = Use copper carbonate or copper oxide

Error = Used hydrochloric acid Why it's an error? = This will make a chloride salt Improvement = Use nitric acid

Error = Only added a small amount of carbonate Why it's an error? = This means some acid will remain Improvement = Should be added in excess

Error = Did not filter Why it's an error? = Any unreacted carbonate will remain Improvement = Filter to remove excess carbonate

Error = Heat solution strongly Why it's an error? = This could cause the salt to breakdown Improvement = Heat gently, then allow to evaporate naturally or in drying oven

