
Lesson 10: 2D Lists Challenge

Programming Part 5: Strings and Lists

Computing

Rebecca Franks

 Materials from the Teach Computing Curriculum created by the National Centre for Computing Education1

Decompose noughts and crosses

2

Task

Think about all of the steps that are required for a player to get to a winning position in
noughts and crosses.

List them all in the box provided.

Don’t be too concerned over a specific order at this stage.

3

Getting started

4

Noughts and crosses structure chart

5

Noughts and
crosses

Display board Check for a
win

Game
instructions

Read for valid
position

identifier
check_win

parameters
board,
player

return
won

identifier
displayboard

parameters
board

return
none

identifier
instructions

parameters
board

return
none

Move a player
piecePlay the game

identifier
readpositions

parameters
player

return
position

identifier
move

parameters
board,
player

return
board

identifier
play

parameters
board

return
none

Task: Reading the board

Although there are lots of ways to set up a noughts and crosses board, you will be using a
2 Dimensional list. Initially, this will look like this:

Each element in this 2 Dimensional list can be accessed using a variation of this code
snippet:

6

1
2
3

board = [[" ", " ", " "],
 [" ", " ", " "],
 [" ", " ", " "]]

 # r c
board[0][0]

Task: Reading the board

The values in the square brackets on the previous slide are replaced with the row and
column indexes. These are represented in the grid below:

A procedure will then be used to display the board based on the data from the 2D list. The
start code for a noughts and crosses board can be viewed below or by accessing this link
(ncce.io/ks4-boardformat):

7

[0][0] [0][1] [0][2]
[1][0] [1][1] [1][2]
[2][0] [2][1] [2][2]

def displayboard(board):
 print(" ", board[0][0], "│", board[0][1], "│", board[0][2])
 print(" ───┼───┼───")

Task: The board
Step 1

Use the information on page one to help you create a completed noughts and crosses board
using the 2D list and the incomplete procedure.

Step 2

Call the procedure and see how the board is displayed on the screen. You might want to try
different board layouts to personalise it further.

Step 3

Modify the board 2D list by adding in O’s and X’s and check if your display board still looks
like a workable board for your game.

An example output might be:

8

Task: Checking for a win

Step 1

Work out all of the possible ways that you can win at noughts and crosses. Write the total
number down.

Tip: You might be able to work this out in your head but if not, get some scrap paper and
keep drawing boards until you have drawn all of the possibilities and then count them.

9

Task: Checking for a win

Step 2

Using the grid below as a guide. Write down all of the combinations for a noughts and
crosses win. The first one has been done for you.

1. [0][0] [0][1] [0][2]

10

[0][0] [0][1] [0][2]
[1][0] [1][1] [1][2]
[2][0] [2][1] [2][2]

Task: Checking for a win

Step 3

A function has been started that will check if the current 2D list contains a winning
combination. Here is the start code:

Complete this function using the combinations that you provided in Step 2.

11

def check_win(board, player):
 won = False
 if board[0][0] == player and board[0][1] == player and board[0][2] == player:
 won = True

Task: Checking for a win
Step 4

Test your function by editing your board so that X wins for each possible combination. For
example, to test the first combination, set your board like this:

Tip: you will need to create a variable for the player to ensure that this argument is passed to the check_win
function. Make sure that the player holds the value X or your program will not work.

Tip: to make sure that your code works you will need to print won and see if it is True when a winning
combination is used.

Here is an example of what the output for the first combination might look like:

12

1
2
3

board = [["X", "X", "X"],
 [" ", " ", " "],
 [" ", " ", " "]]

Complete noughts and crosses

13

Task: Game instructions

Step 1

A procedure needs to be created to provide instructions to the user at the beginning of the
game.

During game play the user will see the board with the numbers 1 to 9 to show the locations
where they can place their X or O. They enter the number and then their X or O will be
placed on the board. The first player will be X and the second player will be O.

Create a procedure called instructions that provides these instructions to the user.

14

Task: Game instructions

Step 2

Test your program by calling the procedure to see how user friendly it is. You might decide
that it needs to appear more slowly and introduce some delays to the program to slow the
instructions down.

An example output can be seen on the next slide.

15

Task: Game instructions

16

Task: Move a player piece

Step 1

A function needs to be created that moves the player piece onto the board. Define a
function using the following interface:

Identifier: move

Parameters: board, player

Return values: board

Tip: all subroutines should be defined before the main program begins.

17

Task: Move a player piece

Step 2

Complete the function ensuring that it:

● Asks the current player to enter their desired position
● Uses the position entered to add either a O or X to the board at the desired location
● Returns the board

18

Task: Move a player piece

Step 3

For testing purposes make sure that player holds the value X. Test your program by entering
each number from 1 to 9 and making sure that it correctly adds an X to the correct position
on the board.

An example output can be seen on the next slide.

Tip: when testing your code you can # tag out the instructions() procedure to make
testing quicker. Just place a # before the procedure call and it will be ignored during
execution.

19

Task: Move a player piece

20

Task: Play
Step 1

A procedure needs to be created that will run the playing of the game. This will be built up
over several tasks. Define a procedure using the following interface:

Identifier: play
Parameters: board
Return values: none

Step 2

At this stage the play procedure should:

● Only work for X
● Continue to ask the user to enter a position until X wins
● End the program when X wins

Complete the play procedure so that it performs the above tasks.

Task: Play

Step 3

Test your program for all winning moves that X can have to make sure that it works
correctly. Remember to call the procedure at the bottom of your program.

An example output can be seen on the next slide.

22

Task: Play

23

Task: Switching between players

Step 1

For this task you will still be working in the play procedure.

Introduce a new variable called currentplayer and hold the value X. This should be
declared outside of the while loop initially.

Step 2

Introduce selection to your while loop so that if the current player is X it switches to O and if
the current player is O it switches to X.

24

Task: Switching between players

Step 3

Ensure that player now holds currentplayer instead of X.

Step 4

Test your program to see if it switches between players during game play.

An example output can be seen on the next slide.

25

Task: Switching between players

26

Task: Announce the winner!
Step 1

Introduce a new variable called winner. The new variable should hold the currentplayer
when a win happens.

Step 2

When a player has won, create an output that states which player has won the game.

Step 3

Test the game to make sure that the correct winner is announced at the end of the game.

An example output can be seen below:

27

Task: Add validation checks

Step 1

Create a new function that will make sure that a string number between 1 and 9 has been
entered by the player in the move function. The function should have the following
interface:

Identifier: checkpositions

Parameters: player

Return values: position

28

Task: Add validation checks

Step 2

The checkpositions function should:

● Ask which location the piece should be placed
● Check that the location is a string number between 1 and 9
● If the value is entered incorrectly then it should continue to ask for the correct input
● Return the valid value back to the move function to the position variable

Tip: you need to make sure that the user is entering a string character and not an integer.
You can use a list to hold the valid values and check the input against the list.

29

Task: Add validation checks
Step 3

Test that your new function works
correctly by entering correct and
incorrect data.

An example output is shown - >

Step 4

Ensure that appropriate validation
checks have been used at any
other input in the game.

30

Test your program

31

Introduction

Copy and complete the testing table on the next slide to ensure that your program works
correctly.

Remember to include tests that use erroneous, boundary and normal data.

32

Testing table

33

Test
number

Test
description

Input (if
required)

Expected output Actual output If the test was
unsuccessful. How
was it fixed?

