Structures and Bonding Solids, Liquids and Gases Worksheet

Combined Science - Chemistry - Key Stage 4

Mr Robbins

Periodic Table of Elements

Relative atomic masses for Cu and Cl have not been rounded to the nearest whole number.

^{*} The lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omitted.

- 1. The table gives the melting points and boiling points of some elements.
 - a) What state is neon in at -247 °C?
 - b) What state is zirconium in at 2500 °C?
 - c) Which elements in the table are liquids at 2000 °C?
 - d) Which elements in the table are gases at 4000 °C?
 - e) Which elements are solids at -100 °C?
 - f) By using the data in the table which elements are most likely to be metals? Explain your answer.
 - g) David says "If an element has a high melting point then it must be because the atom is very heavy" Do you agree. Give a reason for your answer.
 - h) HT only. Why is the particle model not accurate when used for some substances?

Element	Melting point (°C)	Boiling point (°C)
Boron	2076	2550
Neon	-249	-246
Niobium	2469	4927
Zirconium	1855	4371
Yttrium	1522	3337

Answers

- a) Liquid
- b) Liquid
- c) Zirconium, Yttrium
- d) Yttrium, Neon, Boron
- e) Boron, Niobium, Zirconium, Yttrium
- f) Boron, Niobium, Zirconium, Yttrium. All have high melting and boiling points
- g) I do not agree. It is to do with the strength of bonds or forces of attraction between the particles
- h) It assumes particles are perfect spheres, dense and have no attractive forces between them

Quick check

	How are the particles arranged?	How do the particles move?
Solid		
Liquid		
Gas		

Independent task

When the particles of a solid are heated they k	pegin to vibrate
We register this as a change in	When it reaches the
melting point the temperature does not	The energy is
used to overcome some of the	forces between the
particles. When it has completely melted the t	temperature begins to
again.	
When the boiling point is reached the	remains
constant. The energy is used to overcome mor	re intermolecular
allowing the particles to escape into the	phase

Quick check

$$Na_2S_2O_3(s) + 2HCI(aq) \rightarrow 2NaCI(aq) + H_2O(I) + SO_2(g) + S(s)$$

- 1. List the solids
- 2. How many liquids are there?
- 3. What is the formula of the gas
- 4. Which substance is in solution before the reaction begins?

